
Hardening Attack Surfaces with

Formally Proven Binary Format Parsers

Nikhil Swamy
Microsoft Research

Tahina Ramananandro
Microsoft Research

Aseem Rastogi
Microsoft Research

Irina Spiridonova
Microsoft Research

Haobin Ni∗
Cornell University

Dmitry Malloy
Microsoft

Juan Vazquez
Microsoft

Michael Tang
Microsoft

Omar Cardona
Microsoft

Arti Gupta
Microsoft

Abstract

With an eye toward performance, interoperability, or legacy
concerns, low-level system software often must parse binary
encoded data formats. Few tools are available for this task,
especially since the formats involve a mixture of arithmetic
and data dependence, beyond what can be handled by typical
parser generators. As such, parsers are written by hand in
languages like C, with inevitable errors leading to security
vulnerabilities.

Addressing this need, we present EverParse3D, a parser
generator for binary message formats that yields performant
C code backed by fully automated formal proofs of memory
safety, arithmetic safety, functional correctness, and even
double-fetch freedom to prevent certain kinds of time-of-
check/time-of-use errors. This allows systems developers
to specify their message formats declaratively and to inte-
grate correct-by-construction C code into their applications,
eliminating several classes of bugs.

EverParse3D has been in use in the Windows kernel for
the past year. Applied primarily to the Hyper-V network vir-
tualization stack, the formats of nearly 100 differentmessages
spanning four protocols have been specified in EverParse3D
and the resulting formally proven parsers have replaced prior
handwritten code. We report on our experience in detail.

CCS Concepts: • Software and its engineering → For-

mal software verification; • Security and privacy →
Virtualization and security.

Keywords: Network formats, Parser generators, Formal proofs

ACM Reference Format:

N. Swamy, T. Ramananandro, A. Rastogi, et al.. 2022. Hardening
Attack Surfaces with Formally Proven Binary Format Parsers. In
Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI ’22), June
13–17, 2022, San Diego, CA, USA.ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3519939.3523708

∗Work done during an internship at Microsoft Research

1 Introduction

As recently as in 2019, tcp_input.c, a file in the Linux ker-
nel responsible for parsing TCP headers (and present in the
kernel for 20 years or more) was patched to add a bounds
checkwhen parsing TCP options—without the check, it could
have been possible to trigger an out-of-bounds access on the
stack (Young-X 2019). Errors like this, a form of incorrect
input validation, remain depressingly common in software
today. Indeed, input validation failures are one of the lead-
ing causes of software security vulnerabilities, listed at #3
on Mitre’s Top 25 Most Dangerous Software Weaknesses
list, and implicated in several others (Mitre Corp 2020). The
problem is especially serious in low-level software, such as
operating system kernels or hypervisors, where a single miss-
ing check can compromise the entire software stack. Using a
memory-safe language would help, but memory safety alone
does not ensure that inputs are parsed correctly.
One compelling perspective on the problem is presented

by Bratus et al. (2017), who argue that the root cause of
such input validation failures is due to handwritten parsers
improperly recognizing the formal language of a program’s
input. Bratus et al. point out that while there is widespread ac-
ceptance that “rolling your own crypto” is a bad idea, “rolling
your own parser” can be just as bad and arguablyworse, since
it can be easier to exploit. They argue instead for tools to
automate parser generation for a variety of data formats.

There is reason to be hopeful that the software community
is beginning to embrace parser generation for a variety of
protocol formats. Tools and libraries like Protocol Buffers,
FlatBuffers, and even JSON offer parsing and serialization
tools for exchanging structured data. However, these libraries
choose the wire format, limiting their usability in scenarios
where wire formats are dictated by external concerns—one
cannot use, say, Protocol Buffers to parse TCP headers.

https://doi.org/10.1145/3519939.3523708

PLDI ’22, June 13–17, 2022, San Diego, CA, USA N. Swamy, T. Ramananandro, A. Rastogi, et al.

Figure 1. The EverParse3D workflow

1.1 Low-level Binary Format Parsing, with Proofs

The format of a TCP header is specified in RFC 793 (Postel
1981) in English prose and several block diagrams. The for-
mat is designed to be efficiently “parseable” in a language like
C—so much so, that most implementations work by defining
a C data type to represent a TCP header (tcphdr in Linux),
potentially relying on compiler pragmas to ensure that the
compiler’s layout of the type and the wire format coincide,
and then simply cast an array of bytes holding a packet to the
type and then proceed to validate and read its contents. For
example, here’s a fragment from Linux’s tcp_parse_options,
where skb is a buffer holding the packet to be processed.

const struct tcphdr ∗th = //cast untrusted bytes to tcphdr
(struct tcphdr∗)(skb→ head + skb→ transport_header);

int length = (th→ doff ∗ 4) − sizeof(struct tcphdr);
ptr = (const unsigned char ∗)(th + 1);
while (length > 0) { /∗roughly∗/ check(∗ptr); ptr++; length--; }

This kind of code, particularly when the input data is
untrusted, is dangerous, since it involves a combination of
pointer arithmetic to process variable-length data and non-
trivial case analysis, as formats are often data dependent—the
value of one field determines the set of legal values of some
of the fields that follow.
Rather than writing this kind of code by hand, we offer

a new tool, EverParse3D, a parser generator that produces
formally verified C code from a high-level description of a
binary data format. Figure 1 outlines our proposed method-
ology, in three steps.

Step 1: Specification. Based on some external source of
truth (ranging from published RFCs to legacy code), a pro-
grammer authors a data format specification in a language
called 3D (standing for “Dependent Data Descriptions”). 3D
offers a syntax similar to C’s language of type definitions, in-
cluding enumerations, structures, and unions, extended with
dependent refinement types, powerful enough to specify
many complex formats used in practice.

Step 2: Verified Code Generation. EverParse3D com-
piles the user’s 3D specification to a type description in F★,
a proof-oriented programming language (Swamy et al. 2016).
The type description is checked for well-formedness, e.g., to

ensure that it does not use any unsafe arithmetic. From a
well-formed type description, our verified libraries generate
C code to validate byte streams against their specified format.
The C code is proven to be safe, functionally correct, and
free from double-fetches, important in concurrent settings to
protect against certain classes of time-of-check/time-of-use
attacks (Wang et al. 2017).

Step 3: Integration. Finally, one integrates the generated
C code within a larger application. Any prior handwritten
parsing code can be discarded, and the formally verified
parser can be used in its place. The rest of the application can
now rely on the guarantee that only inputs valid according
to the specification are accepted and can work over a parsed
representation as opposed to the raw bytes.

1.2 Contributions

Ramananandro et al. (2019) introduce EverParse, consist-
ing of a library of parser and serializer combinators called
LowParse coupled with a frontend to generate parsers from
IETF RFCs, notably those used in the TLS protocol stan-
dard (Rescorla 2018). Their work targeted the use of parsers
from within a verified F★ application, rather than our goal of
using formally verified parsers within larger, unverified appli-
cations in C or C++. Our contributions evolve Ramananandro
et al.’s EverParse in service of this new goal.

The design and mechanized formalization of 3D. We
formalize 3D by giving it three related semantic denotations
within F★: first, a type denotation, representing a 3D pro-
gram as an F★ type; second, a parser denotation, describing
the wire format as a pure function; and, third, a validator
denotation, an imperative program that validates a stream
of bytes while running user-provided parsing actions. Our
main theorem, mechanically checked in F★, relates the three
denotations, proving that the validator is a refinement of
the parser, which, in turn, is a parser for values of the type
denotation.

From semantics to a certified compiler. We turn our
denotational semantics into a compiler by exploiting the
first Futamura (1971) projection on dependently typed F★
programs. Specifically, for a given 3D program, by partially
evaluating the validator denotation, we produce imperative
F★ code extractable to C.

A new library of parser combinators. Underpinning
our semantics is a new library of parser and parsing action
combinators, enhancing Ramananandro et al.’s LowParse
library in several ways, including the following highlights:

• Parsing with arbitrary data dependences on values
that fit in a machine word, important for describing
ad hoc tagged formats used in practice.

• Validators integrated with imperative parsing actions,
allowing both the construction of parsed structures

Hardening Attack Surfaces with Formally Proven Binary Format Parsers PLDI ’22, June 13–17, 2022, San Diego, CA, USA

from binary input formats as well as error-reporting
callbacks for diagnostics. Although our specifications
do not capture their functional correctness, actions
are proven to be memory safe, to respect our double-
fetch freedom guarantees, and to satisfy other auxiliary
properties, e.g., constraints on their read and write
footprints.

• Parsing fromnon-contiguous or streaming data sources,
with on-demand fetching of data, important for use
in scatter/gather-IO scenarios or when parsing large
inputs that don’t fit in memory.

• Compositional proofs that all our combinators are free
from double-fetches.

Evaluating EverParse3D in Windows. EverParse3D
has been in use in the Windows kernel for the past year. Ap-
plied primarily to the Hyper-V network virtualization stack,
the formats of nearly 100 different messages spanning four
proprietary protocols have been specified in 3D and result-
ing formally proven parsers have replaced prior handwritten
code. Our work has contributed to virtualization-based secu-
rity in Windows 11 and other releases.

Software artifacts. The application of our toolchain to
Windows includes proprietary source code and is not pub-
licly available. However, the 3D toolchain, including the Ever-
Parse libraries, the F★ programming language, Z3 SMT solver,
and the KaRaMeL C code generator are all open source and
developed publicly on GitHub. Documentation, code sam-
ples, and links to our latest tool releases are available from
https://project-everest.github.io/everparse.

2 A Tour of 3D

A 3D program is a sequence of type definitions. Unlike C,
where type definitions do not produce any code, in 3D a type
definition for T yields (in its simplest form) code with the
following signature:
BOOLEAN CheckT(uint8_t ∗base, uint32_t len);

This is the type of a C procedure, CheckT, which, when given
a pointer base to an array of bytes of length at least len,
checks that the contents of base correctly represents a value
described by the binary format specified by T. For example, if
we have enum T { A=0, B=3, C=4 }, then CheckT simply checks
that base contains at least four bytes (the default size of
an enum is four bytes), and that it contains a little-endian
representation of either 0, 3, or 4. A client program can use
CheckT to validate the contents of base, particularly when it
is untrustworthy, before accessing it.

Of course, a client program will want to do more with base
than simply validate its contents. In general, onemaywant to
parse the raw bytes of base into some more structured form.
Or, in case parsing fails, one may want to recover a precise
reason for the failure. Or, it may be that the raw bytes of a
message are scattered in memory, rather than being stored

contiguously in the base array. EverParse3D supports these
features and more. For now, it will be helpful to just keep
in mind that when defining a type T in 3D, one is implicitly
defining a C procedure to check that a sequence of raw bytes
accurately represents a T.
In designing 3D, our main goals were expressiveness and

explicitness, and a notation easy to grasp for C programmers.
For expressiveness, we aimed to capture the data formats

used in practice, such as in the Windows kernel. This de-
manded a rich language of data types—pleasingly, a fairly
canonical core language of zero-order dependent types suf-
ficed, as summarized by the type algebra below:
t ::= b | x:t{e} | x:t0 & t1 | if e then t0 else t1

where b ranges over a rich collection of base types; x:t{e} is a
refinement type inhabited by x:t such that e evaluates to true;
x:t0& t1 is the type of dependent pairs, where the type of the
second field t1 depends on the value x of the first field; and
if e then t0 else t1 is the type defined by case analysis on e.
Although this algebra is sufficient for encoding arbitrary

products and sum types with data dependence, it lacks re-
cursive types and so a means to directly express unbounded
data. However, as we will see, the base types b include sev-
eral forms of variable-length collections, which have sufficed
so far. Additionally, base types include ⊥, the type with no
inhabitants, whose validator fails immediately; the unit type
of size 0, whose validator always succeeds; UINT8, the type
of a single byte; and little- and big-endian versions of 2, 4,
and 8-byte unsigned integers.
The goal of explicitness pervades our design in many re-

spects, as we will see. Most significantly, our validators have
no implicit allocations and do not parse wire formats into
some default canonical representation. Instead, 3D allows
decorating types with imperative actions, which gives ex-
plicit control over which parts of a message are read and
into which structures.

In what follows, we present an overview of 3D using sim-
ple examples in its C like concrete syntax. We conclude the
section with a specification of the TCP header format, which
brings together several features of the language.

2.1 Structures, Dependency, Refinements

The type Pair below defines a structure with two fields.
typedef struct _Pair { UINT32 fst; UINT32 snd } Pair;

This defines a binary format of 8 bytes, with four bytes to
represent each little-endian UINT32. Unlike in C, the layout
and alignment of fields in 3D in a struct is explicit. So, by
default, the type ByteInt below is represented in 5 bytes, with
no alignment padding.
typedef struct _ByteInt { UINT8 fst; UINT32 snd } ByteInt;

3D offers an attribute on a type definition to trigger the
insertion of alignment padding between the fields of a struct
so as to match the C ABI. However, for the purposes of this

https://project-everest.github.io/everparse

PLDI ’22, June 13–17, 2022, San Diego, CA, USA N. Swamy, T. Ramananandro, A. Rastogi, et al.

paper, we ignore this option and require the layout of a type
to be entirely explicit. EverParse3D also emits static asser-
tions in the generated C code to check that the user-specified
layout of a type and a C compiler’s view are compatible.

3D allows dependence among the fields of a structure, e.g.,
an OrderedPair’s fst field is less than or equal to its snd field.
typedef struct _OrderedPair {
UINT32 fst;
UINT32 snd { fst <= snd };

} OrderedPair;

The refinement associated with a type (here fst ≤ snd) can
be any boolean-valued expression built from the names in
scope and a small but expressive language of pure opera-
tors (integer comparisons, arithmetic etc.) and conditional
expressions. Enumerated types in 3D are just syntactic sugar
for integer refinement types.

2.2 Value-parameterized Types

Type definitions in 3D can be parameterized by values. For
example, PairDiff(n) is the type of a pair of UINT32, whose
snd component is at least n greater than fst.
typedef struct _PairDiff (UINT32 n) {
UINT32 fst;
UINT32 snd { fst <= snd && snd − fst >= n };

} PairDiff;

Refinement expressions are checked for arithmetic safety,
ensuring the absence of overflow and underflow errors. In the
refinement above, the conjunction operator && is left-biased,
and the check fst ≤ snd ensures that the subtraction following
it, snd − fst, does not underflow. Without the fst ≤ snd check,
F★’s would reject the program due to a potential underflow.
Parameterized types can be instantiated and used within

other types. For example, the type Triple below defines a
dependent pair of a bound and a PairDiff(bound).
typedef struct _Triple {

UINT32 bound;
PairDiff(bound) pair;

} Triple;

3D does not yet offer type-parameterized types, since
our primary goal has been to represent types in C, rather
than templatized types in a language like C++. However,
we expect our compilation technique to extend to type-
parameterized types in the future, whichwould help promote
more modular specifications.

2.3 Casetype: Contextually Discriminated Unions

When using untagged unions in C, determining which case
of the union is active is left implicit in the code. In 3D, the
case of a union is made explicit using a type defined by case
analysis. The type ABCUnion(tag) is a union of three cases:
when tag=A, it is a UINT8; when tag=B it is a UINT16; and
when tag=C it is a PairDiff(17). As with struct fields, by default,

3D does not insert any padding—so, unlike a C union, the
length of ABCUnion(tag) is variable, depending on the value
of the tag itself.
casetype _ABCUnion (ABC tag) {

switch (tag) {
case A: UINT8 a;
case B: UINT16 b;
case C: PairDiff(17) c;

}} ABCUnion;

Case types are often used within some larger type, where
some information in the context determines the value of the
tag. For example, in TaggedUnion below, the value of the first
field determines the case of the third payload field.
typedef struct _TaggedUnion {

ABC tag;
UINT32 otherStuff;
ABCUnion(tag) payload;

} TaggedUnion;

2.4 Variable-Length Data

To represent variable-length data in C, programmers resort
to various ad hoc conventions. For instance, to package a
variable-length array with its length, a common style in C
is to use a zero-length array as the last field of a struct, e.g.,
struct { UINT32 len; UINT64 array[0] }. 3D instead offers several
forms of variable-length array and string types (in addition
to the variable-length casetype covered earlier).
The type VLA pairs a len field with a TaggedUnion array

whose length in bytes (not the element count) is exactly len.
typedef struct _VLA {

UINT32 len;
TaggedUnion array[:byte-size len];

} VLA;

Another form of variable-length data is the zero-terminated
string, where T f[:zeroterm−byte−size−at−most n], is the type
of a zero-terminated string of T (with a well-defined zero
element) consuming no more than n bytes. We introduce
other forms of variable-length types supported by 3D when
presenting more examples.

2.5 Parsing Actions

So far, all our examples produce validators that simply check
whether a given sequence of bytes is a valid representation of
a given data format. However, 3D also provides a safe way of
accessing the fields of a structure by associating imperative
parsing actions with parts of a format specification.

In the example below, the typeVLA1 takes an out-parameter,
marked with the mutable qualifier. The field another is dec-
orated with an action, a piece of imperative code that is
executed by the generated validator immediately after the
associated field has been validated.

Hardening Attack Surfaces with Formally Proven Binary Format Parsers PLDI ’22, June 13–17, 2022, San Diego, CA, USA

typedef struct _VLA1(mutable UINT64∗ a) {
UINT32 len;
TaggedUnion array[:byte-size len];
UINT64 another {:act ∗a = another };

} VLA1;

In this case, the validator for VLA1(a) reads the first len
field; then validates the variable-length TaggedUnion array;
then validates the UINT64 another field—if and when this last
step succeeds, the action is executed, assigning the value
of another to the out-parameter a. Our verifier ensures that
actions are safe to execute. As such, by using an action to
read the value of another into a, the client program is saved
the trouble and risk of accessing the another field by reading
from a computed offset (base + 4 + len) from the base pointer.

More complex parsing actions allow, in general, to invoke,
in a type-safe way, user-provided callbacks. In our experi-
ence, when interfacing with a C application, one typically
uses a mixture of actions to parse variable-length data that
cannot be represented in C types, while fixed-length parts
of a format, after validation, are simply cast to a C type and
read using C’s native support for structured field access.

2.6 Putting it together: Parsing a TCP Header

The format of a TCP segment header is specified in RFC 793
with several revisions since the original 1981 version.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		N	C	E	U	A	P	R	S	F	
Offset	Rese	S	W	C	R	C	S	S	Y	I	Window
	rved		R	E	G	K	H	T	N	N	
+-+											
Checksum	Urgent Pointer										
+-+											
Options	Padding										
+-+											
data											
+-+

The picture above is shows the bit-level layout of the
header, with data dependences among the fields—the (vari-
able) length of options is constrained by Data Offset, since
the data field must start Data Offset * 4 bytes from the
start of the header. Note the picture is inaccurate since the
Options field is actually variable length, padded out to con-
sume a multiple of 4 bytes. Off-the-shelf tools like Protocol
Buffers cannot express ad hoc binary formats like this.
Also of interest for our purposes is the structure into

which the Options array is parsed. We use a struct named
OptionsRecd, similar to tcp_options_received defined in the Linux
(2021a) TCP implementation. 3D allows specifying structures
that are used in parsing actions, while marking themwith the
output keyword to indicate that no validation code should be

generated for such a struct. OptionsRecd contains aggregated
fields for all the TCP options.
output typedef struct _OptionsRecd {
UINT32 RCV_TSVAL; /∗Timestamp TCP option related fields∗/
UINT32 RCV_TSECR;
UINT16 SAW_TSTAMP : 1; ... /∗Fields related to other options∗/

} OptionsRecd;

With the type of our “parse tree” set, we can define a
parser for TCP headers as shown below.
typedef struct _TCP_HEADER(UINT32 SegmentLength,

mutable OptionsRecd∗ opts,
mutable PUINT8∗ data) {

PORT SourcePort; ... /∗Other fields are elided∗/
UINT16 DataOffset:4
{ 20 <= DataOffset ∗ 4 && DataOffset ∗ 4 <= SegmentLength };
...
OPTION(opts) Options[:byte-size (DataOffset ∗ 4) − 20];
UINT8 Data[:byte-size SegmentLength − (DataOffset ∗ 4)]

{:act ∗data = field_ptr }
} TCP_HEADER;

A parser for TCP_HEADER(len, opts, data) checks that the
input buffer contains a TCP segment header that fits in ex-
actly len bytes. It parses Options into the OptionsRecd struct,
and stores a pointer to the Data field in data.

The DataOffset field consumes 4 bits of a 16 bit field, since
its value is in units of 32 bit words, we multiply by 4 for the
byte offset of Data. The refinement checks that the byte offset
of Data is at least 20 (the size of all the static fields just prior
to the Options field), and that it fits within SegmentLength.

TheOptions field is a variable-length array ofOPTION(opts)
consuming all the bytes remaining following the Urgent
pointer until the beginning of the Data field—as we will see,
our specification includes the Padding field.
For the variable-length Data field, after validating that

the input is large enough to hold it, we take a pointer to
it (using the field_ptr primitive action) and store it in the
out parameter data. The client may then call into another
validator specific to the data, copying or transforming it in a
single pass into another structure.

Each element of the Options array is a tagged union, with
an OptionKind field describing the payload that follows.
typedef struct _OPTION(mutable OptionsRecd∗ opts) {
UINT8 OptionKind;
OPTION_PAYLOAD(OptionKind, opts) PL; } OPTION;

The payload itself is a casetype, branching on OptionKind.
In case we have an OPTION_KIND_END_OF_LIST, the specifi-
cation dictates that all the bytes that follow are zero, includ-
ing the padding if any, until the start of the Data field. We
use 3D’s all_zeros type, a variable-length type that accepts
strings of zeroes up to the length of the enclosing type:

https://datatracker.ietf.org/doc/html/rfc793

PLDI ’22, June 13–17, 2022, San Diego, CA, USA N. Swamy, T. Ramananandro, A. Rastogi, et al.

casetype _OPTION_PAYLOAD(UINT8 OptionKind,
mutable OptionsRecd∗ opts) {

switch(OptionKind) { ...
case KIND_END_OF_OPTION_LIST: all_zeros EndOfList;
case KIND_TIMESTAMP: TS_PAYLOAD(opts) Timestamp; }

} OPTION_PAYLOAD;

We have kind-specific formats in the other cases, e.g.,
TS_PAYLOAD for the timestamp TCP option:
typedef struct _TS_PAYLOAD(mutable OptionsRecd∗ opts) {
UINT8 Length { Length == 10 }; UINT32 Tsval;
UINT32 Tsecr {:act opts−>SAW_TSTAMP = 1;

opts−>RCV_TSVAL = Tsval;
opts−>RCV_TSECR = Tsecr;}

} TS_PAYLOAD

The interesting part is that when we succeed in parsing
the Tsecr field of the TS_PAYLOAD, the action updates the
corresponding fields in opts. This is similar to the handling
of the timestamp TCP option in Linux (2021b) except in 3D,
the options parsing code is written in a declarative style,
free of any user-written pointer arithmetic. Other options
are parsed in a similar manner—our online code repository
shows the complete 3D TCP spec.

The generated C code for CheckTcpHeader requires base to
at least contain len bytes, and checks that it contains a valid
TCP_HEADER stored in SegmentLength bytes and, if so, the
return value is TRUE, the options are written into opts, and
∗data points to the start of the Data field in base.
BOOLEAN CheckTcpHeader(uint32_t SegmentLength,

OptionsRecd ∗opts, uint8_t ∗∗data,
uint8_t ∗base, uint32_t len);

In the next section, we describe our formalization and
implementation of 3D and its toolchain in F★, with proofs
that the generated validators are safe and behave according
to their formal specification.

3 Implementing EverParse3D

3D is formalized and implemented as an embedded domain-
specific language (DSL) within F★, a programming language
and proof assistant based on a dependent type theory (like
Coq, Agda, or Lean). F★ also offers an effect system, extensi-
ble with user-defined effects, and makes use of SMT solving
to automate some proofs. We use F★’s syntax in this section,
and provide a brief primer below.
F★’s toolchain includes support for several other embed-

ded DSLs, notably Low* (Protzenko et al. 2017), an impera-
tive language with a Hoare logic for functional correctness
proofs. Low* programs can be extracted from F★ to C, and a
metatheorem establishes that extracted C programs simulate
the F★ program. However, the tool implementing this extrac-
tion pipeline (named KaRaMeL), although modeled after this
metatheory, is not formally verified and is part of our trusted
computing base, which also includes the F★ typechecker and

the Z3 SMT solver. The 3D parser and frontend that desug-
ars the C-like concrete syntax into F★’s formal notation is
also trusted to accurately reflect the user’s intention. Mod-
ulo these trust assumptions, we offer mechanically checked
theorems attesting to the soundness of EverParse3D.

Syntax: Binders, lambda, arrows, computation types.

F★ syntax is roughly modeled on OCaml (val, let, match etc.)
with differences to account for the additional typing features.
Binding occurrences b of variables take the form x:t, declar-
ing a variable x at type t; or #x:t indicating that the binding
is for an implicit argument. The syntax _(b1) ... (b𝑛) → t intro-
duces a lambda abstraction, whereas b1 → ...→ b𝑛 → c is the
shape of a curried function type. Refinement types are writ-
ten b{t}, e.g., x:int{x≥ 0} is the type of non-negative integers
(i.e., nat). As usual, a bound variable is in scope to the right
of its binding; we omit the type in a binding when it can be
inferred; and for non-dependent function types, we omit the
variable name. The c to the right of an arrow is a computa-
tion type. An example of a computation type is Tot bool, the
type of total computations returning a boolean. By default,
function arrows have Tot co-domains, so, rather than deco-
rating the right-hand side of every arrow with a Tot, the type
of, say, the pure append function on vectors can be written
#a:Type→ #m:nat→ #n:nat → vec a m → vec a n→ vec a (m + n),
with the two explicit arguments and the return type depend-
ing on the three implicit arguments markedwith ‘#’. We often
omit implicit binders and treat all unbound names as implic-
itly bound at the top, e.g., vec a m → vec a n → vec a (m + n)

3.1 Parsers, Validators, and Readers

The C code emitted by our toolchain is a binary format
validator. As such, our semantics revolves around two central
notions: a specificational parser describing the format and
an imperative validator whose type relates it to the parser.

Core parsers. Drawing on the work of Ramananandro
et al. (2019), a core_parser k t is a function f which when ap-
plied to b:bytes can either fail (returning None) or succeed
and return Some (v:t, n:nat), where n describes the number of
bytes of b that were consumed. Additionally, f is required to
be injective, meaning that f uniquely determines the value v
that can be represented by the bytes b, a useful property that
ensures that the formats defined by parsers do not admit
security bugs that arise due to parsing ambiguities.

let core_parser (k:parser_kind) (t:Type) =
f: ((b:bytes)→ option (t & n:nat{ n ≤ length b }))

{ injective f ∧ has_kind f k }

Parsers and their kinds. Further, a notion of parser kind
provides metadata about the parser, placing, for instance,
lower and upper bounds on the number of bytes consumed
by the parser. The full details of parser kinds are described
by Ramananandro et al., however, as we will see in §3.2,

Hardening Attack Surfaces with Formally Proven Binary Format Parsers PLDI ’22, June 13–17, 2022, San Diego, CA, USA

parser kinds are essential to ensure that 3D programs are
well defined. For our purposes, it suffices to work with an
abstraction of parser kinds called pk nz wk, where nz:bool
records whether or not a parser consumes at least some non-
zero bytes, and wk:weak_kind, describes whether (1) a parser
consumes all the bytes given to it (wk = ConsumesAll); (2)
whether it consumes a prefix of the bytes and is insensitive to
the remaining bytes (wk = StrongPrefix); or (3) if not much else
is known about it (wk = Unknown). A small algebra of kinds
allows them to compose sequentially with and_then, and to
be partially ordered according to glb, or greatest lower bound.
The type of parsers we use in the remainder of this section is
parser k t, core parsers for type t indexed by pk nz wk kinds.

type weak_kind = | ConsumesAll | StrongPrefix | Unknown
let pk (nz:bool) (wk:weak_kind) = k:parser_kind

{ (nz =⇒ consumes_non_zero_bytes k) ∧
respects_weak_kind k wk }

let parser (k:pk nz wk) (t:Type) = core_parser k t

Validators. A parser is a pure function operating over a
functional representation of the input bytes. While suitable
for a specification, executing it would incur many implicit
allocations, making it unsuitable for integration in a C appli-
cation. Instead, we use a validator, an imperative procedure
that refines a given parser, without any implicit allocation.
Our validators may also run a user’s explicit parsing actions.
The type of a validator, validate_with_action p i l ar, is shown
in Figure 2. This type captures the main guarantees provided
by our system and appears in the main theorem of §3.3, so
we describe it in detail.

An inhabitant v:validate_with_action p i l ar is an impera-
tive procedure in Low*, where p is a specificational parser
describing the functional behavior of v; i is a memory invari-
ant of all the imperative parsing actions that vmay execute; l
describes the set of memory locations that vmay modify, i.e.,
the out parameters; and ar, a boolean standing for “allowed
to read”, signifying whether a continuation can safely read
the input byte stream without incurring a double fetch.
Input streams: The first argument of a validator is st, an in-
stance of a typeclass of input streams, encapsulating various
forms of data sources on which a validator can be run. The
next argument, pos, is the current position in the stream,
from which v is to start validating the format specified by
p. The simplest instance of an input_stream_t is an array of
bytes, but our framework can be instantiated for use with
arbitrary streams, e.g., to validate huge formats that don’t
fit in memory, or to validate messages that are scattered in
memory. Our input streams are designed with a permission
model that allows us to prove that validators are double-fetch
free. In particular, reading a byte from the stream advances
it and makes it provably impossible to read that byte again.
One can also check if a stream contains some number of
bytes, without advancing it.

let validate_with_action (p:parser k t) (i:inv) (l:loc) (ar:bool) =
st:input_steam_t→ pos: pos_t → Stack uint64
(requires _h →
disjoint l (fp st) ∧ sti st h ∧ i (fp st) h ∧ pos==read_len st h)

(ensures _h res h' →
sti st h' ∧ i (fp st) h' ∧ modifies (l ∪ perm_fp st) h h' ∧
let s, s' = remaining st h, remaining st h' in
s' `is_suffix_of` s ∧
if is_success res then
if ar then res ≥ pos ∧ s' == s ∧ valid_pos p s s'
else valid_consumed p s s' ∧ res == read_len st h'
else not (is_action_failure res) =⇒ not (valid p s))

Figure 2. The type of a validator (simplified)

Effect and result type: The effect of running v st pos is de-
scribed by Stack uint64 (requires pre) (ensures post), a computa-
tion type. The effect label Stack proves that v does not allocate
on the heap (meeting our requirement of no implicit alloca-
tions). The return type is uint64, a 64-bit unsigned integer
describing the position in the stream reached after running
the validator. We reserve a small number of bits in the result
type to hold error codes, in case the validator fails. The pre
is a precondition, a predicate on the input state h; the post
is postcondition, a predicate relating the input state h, the
result res, and the output state h'.
Precondition: The precondition requires the set of mutable
locations l to be disjoint from (fp st), the footprint of the input
stream; the stream’s internal invariant (sti st) is expected to
hold; the invariant i of the actions are expected to hold, and
can relate the actions to the footprint of the stream; and pos
is expected to be current position of the bytes in the stream
that have been read so far.
Postcondition: The postcondition restores the invariants sti
and i and the modifies clause states that v mutates at most
the locations in l and the read permissions of the prefix of
the stream (not the stream itself). The variables s and s'
represent a logical view of the entire suffix of the stream in
the initial and final states. If the result res is successful, then
we have two cases. If the ar flag is set, then v has validated
that the res-length prefix of s is well-formatted according to
the specification p, without consuming any input bytes (e.g.,
it must have been possible to validate p by just checking the
stream’s capacity). If ar is not set, then s has been validated
up to res and those bytes have been consumed. If the result
res is not successful, and the error code indicates that no
action failed, then the input buffer is ill-formed with respect
to p, i.e., v’s success and failure behaviors are characterized
by p, except for additional failures that can be raised by
:check-actions. The behavior of actions is underspecified—
we only prove that validators maintain action invariants
and mutate at most the out parameters. In §4.3, we consider
adding functional correctness specifications for actions.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA N. Swamy, T. Ramananandro, A. Rastogi, et al.

Readers. After running a v: validator p i l ar, if ar = true, then
one can run a reader, a procedure of type reader (p:parser k t),
which reads a x:t out of a stream known to be valid with re-
spect to p. While, in principle, it is possible to define readers
for all types, reading a complex value involves struct-passing,
which is not always efficiently handled by C compilers. As
such, we generally restrict ourselves to leaf readers, readers
for word-sized values, like the various machine integer types,
so complex values are read a word at a time. When validating
a field, if the continuation depends on the value of that field
(e.g., because it appears in a refinement, type parameter, or
an action), we immediately read the value on to the stack
while validating it. As such, in a single pass through the
input stream, we read and validate all the fields that we need
without incurring double fetches.

The types of parsers, validators, and readers set our goal
posts. We aim to give a semantics such that every well-
typed 3D program can be interpreted as an inhabitant of
validate_with_action—if so, then this interpretation yields a
verified imperative procedure in Low*, extractable to effi-
cient C code, to correctly decide if an input C array of bytes
is well-formatted according to its 3D specification, while
running the user’s chosen parsing actions.

Error handling. What we have described is a simplifi-
cation of the type of validators. In reality, validators take
two additional arguments, an application context ctxt and
an error-handling callback. When a parsing error is found,
we call the error handler, passing it the ctxt, together with
the type at which the failure occurred, the field within that
type, and a reason for the error. The handler can process and
record this as needed in the ctxt. We then then propagate
the error code to the caller. As we pop the parsing stack,
we call any error handlers encountered, thereby allowing
applications to reconstruct the full stack trace in case an
error.

3.2 A Type System for 3D

Figure 3 defines a typed abstract syntax for 3D in F★— we
show 6 representative constructors in the language, elid-
ing 11 other constructs that are similar in spirit. An ad hoc
front end for 3D translates the concrete C-like syntax used
in §2 into an element of the type typ. The representation of
typ uses a variety of techniques, including deep and shal-
low embeddings, and other folklore techniques that Chlipala
(2021) recently referred to as mixed embeddings. The in-
dexing structure of typ defines a type system for 3D, which
abstracts a program typ k i l ar by its four indices—k, its kind;
i and l, a memory invariant and footprint of its actions; and
ar, a flag indicating whether or not the format described by
the program has a reader. The rules of composition of a 3D
program restrict and combine these indices in various ways
to ensure that every inhabitant of typ can be given a seman-
tics. As we will see, every term of type typ k i l ar enjoys a

threefold denotational semantics: as a type t; a p:parser k t for
that type; and a validator of type validate_with_action p i l ar.

Pre-denoted types. The first constructor of typ is T_shallow,
which allows for any inhabitant of the F★ type dtyp k i l ar to
be lifted to a typ

type dtyp k i l b = { t:Type; p:parser k t;
r:option (reader p) { b =⇒ r≠None};
v:validate_with_action p i l b }

A dtyp is a shallow embedding of an existing F★ program of a
type suitable for a 3D program, packaging a type t; a parser
p for that type; an optional reader for that parser; and a val-
idator refining the parser. T_shallow allows us to introduce
primitive types into the 3D language just by defining a suit-
able dtyp for them, e.g., dtyp_u32 : dtyp u32_kind ⊤{} true is a
primitive for parsing a UINT32. Further, every type definition
provided by the user also introduces a dtyp instance, allow-
ing subsequent type definitions to refer to prior ones. This is
important since, although typ can be used compositionally,
if one were to simply use typ literals everwhere, the deno-
tation of the resulting type as a validator would fully inline
the validators of all the types it mentions, leading to a code
blowup. With T_shallow we avoid these blowups and ensure
that the procedural structure of our generated code matches
the type definition structure of the source specification, an
important criterion for code acceptance.

Pairs. The 3D type definition struct { UINT32 f; UINT32 g}
is desugared to T_pair (T_shallow dtyp_u32) (T_shallow dtyp_u32).
The indexing structure of typ allows any two types to be
paired; sequentially composing their kinds, conjoining their
invariants and footprints; and marking the type as unread-
able, since we intentionally restrict readers to word-sized
values.

Casetypes. T_if_else is used to represent a casetype. Al-
though at the surface language we support n-ary case anal-
ysis with switch, this is desugared to nested conditionals in
the front end. In T_if_else b t1 t2 the conditional expression
b is shallow, i.e., any F★ boolean expression. T_if_else weak-
ens the kinds of the branches to their greatest lower bound.
For example, switch (t) { case V1: t1; case V2: t2} is desugared to
T_if_else (t=V1) [[t1]] (T_if_else (t=V2) [[t2]] typ_⊥), where [[t]]
is the desugaring of t and typ_⊥ is the always-failing parser
for the empty type.

Refinements. T_refine d r refines the shallow type d with
the refinement predicate r. The type dmust support a reader,
since validating the refinement involves reading a value
v and checking if r v holds. The refinement r is a shallow
F★ boolean function, defined over the type that d parses.
For example, UINT32 f { f < 17 && f + g < 42 } is represented as
T_refine dtyp_u32 (_f→ f < 17 && f + g < 42). By representing
refinements shallowly, we can easily use F★’s SMT-assisted
dependent type checker to check that refinement expressions

Hardening Attack Surfaces with Formally Proven Binary Format Parsers PLDI ’22, June 13–17, 2022, San Diego, CA, USA

type typ : pk nz wk→ inv→ eloc → bool→ Type =
| T_shallow: dtyp k i l b→ typ k i l b
| T_pair:
t1:typ k1 i1 l1 b1 → t2:typ k2 i2 l2 b2 →
typ (and_then k1 k2) (i1 ∧ i2) (l1 ∪ l2) false

| T_if_else:
b:bool→ t1:typ k1 i1 l1 b1 → t2:typ k2 i2 l2 b2 →
typ (glb k1 k2) (i1 ∧ i2) (l1 ∪ l2) false

| T_refine:
t1:dtyp k1 i1 l1 true→ refine:(dtyp_type t1 → bool)→
typ (filter k1) i1 l1 false

| T_dep_pair_with_refinement_and_action:
base:dtyp k1 true i1 l1 →
refine:(dtyp_type base→ bool) →
k:((x:dtyp_type base { refine x })→ typ k2 i2 l2 b2) →
act:((x:dtyp_type base { refine x })→ action i3 l3 b3 bool)→
typ (and_then (filter k1) k2) (i1 ∧ i2 ∧ i3) (l1 ∪ l2 ∪ l3) false

| T_byte_size:
n:U32.t→ t:typ k i l b → typ kind_nlist i l false

Figure 3. A typed abstract syntax for 3D programs (partial)

are safe, e.g., that there is no arithmetic overflow. In contrast,
had we embedded refinements deeply, we would have to
build a safety checker for them from scratch.

Dependent pairs and actions. The most general form
of sequential composition of types in 3D is represented by
T_dep_pair_with_refinement_and_action. This allows compos-
ing a parser for base (equipped with a reader) with a refine-
ment refine; a continuation k returning a typ but whose binder
is a shallow term corresponding to the refined interpretation
of base; and a dependent action act, where action is a small
mixed datatype representing the monadic sub-language of
3D parsing actions, shown below.

type action : inv→ eloc→ Type→ Type =
| Deref: x:pointer a→ action (live x) {} a
| Assign: x:pointer a→ rhs:a → action (live x) {x} unit
...
| Bind: head:atomic i0 l0 t0→ k:(t0 → action i1 l1 t1) →

action (i0 ∧ i1) (l0 ∪ l1) t1
| Cond: hd:bool→ then_:(_:unit{hd}→ action i0 l0 t) →

else_:(_:unit{not hd}→ action i1 l1 t) →
action (i0 ∧ i1) (l0 ∪ l1) t1

Actions include primitives like Deref and Assign to read or
write shallowly embedded pointer values, with indexes de-
scribing the pointers they expect to be live, the pointers they
may mutate, and their return type. Actions can be composed
in sequence (with Bind) or conditionally using Cond—in Cond,
each branch is typeable in a context assuming the branch
condition or its negation, as appropriate.

Variable-length data. Finally, we show T_byte_size n t,
which represents the surface syntax t f [:byte−size n], i.e., an
array of t whose length in bytes is n.

3.3 Three Related Denotations

Our main theorem has the following type, stating that every
well-typed 3D program t:typ k i l b has an interpretation as
a validator. The type of as_validator t states that it refines
as_parser t, the parser interpretation of t; which in turn ref-
erences as_type t, the type interpretation.

val as_validator(t:typ k i l b):validate_with_action (as_parser t) i l b
val as_parser(t:typ k i l b):parser k (as_type t)
val as_type(t:typ k i l b):Type

With the carefully chosen structure of typ, defining these
three denotations is relatively straightforward dependently
typed programming, with proofs automated using F★’s SMT-
assisted typechecker. We show a few cases, where parse_pair,
validate_pair etc. are combinators from the LowParse3D li-
brary, proven correct once and for all.

let rec as_type t = match t with ...
| T_shallow d→ dtyp_type d
| T_pair t1 t2→ as_type t1 & as_type t2
| T_refine t f→ x:as_type t { f x }

let rec as_parser t = match t with ...
| T_shallow d→ dtyp_parser d
| T_pair t1 t2→ parse_pair (as_parser t1) (as_parser t2)
| T_refine t f→ parse_filter (as_parser t) f

let rec as_validator t = match t with ...
| T_shallow d→ dtyp_validator d
| T_pair t1 t2→ validate_pair (as_validator t1) (as_validator t2)
| T_refine t f→ validate_filter (as_validator t) f

Given a 3D program t=T_Pair typ_u32 typ_u32, to run the
validator on some input stream st, one could simply run
as_validator t base 0: this would work, but it would be slow,
since we would, in effect, interleave the interpretation of t
with the actual work of validating the contents of base. Fur-
ther, we actually want executable C code from our toolchain,
not a slow interpreter—the partial evaluation capabilities of
a dependent type checker can help.

F★’s type checker, like many other dependent type check-
ers, already has a facility to symbolically reduce F★ terms
on an abstract machine. For example, to decide if a type
nlist a ((_x→ (x + 1) + y) 1) is equivalent to nlist a (2 + y), F★ re-
duces both types as much as it can and then compares them
for syntactic equality. This machinery is the basis for “type-
level computation”, a distinctive feature of dependent types,
and as our small example illustrates, it can be used to even
partially evaluate terms that contain variables, though things
have to be carefully arranged to ensure terms reduce as
much as one expects, e.g., ((_x→ (x + 1) + y) 1) reduces to 2 + y,
whereas ((_x→ x + (1 + y)) 1) would only reduce to 1 + (1 + y),

PLDI ’22, June 13–17, 2022, San Diego, CA, USA N. Swamy, T. Ramananandro, A. Rastogi, et al.

Module .3d LOC .c/.h LOC Time (s)
NVBase 106 549/138 7.0
NvspFormats 947 4195/90 12.8
RndisBase 102 226/121 4.6
RndisHost 776 3157/200 12.7
RndisGuest 1157 5612/165 14.6
NetVscOIDs 553 2594/90 11.4
NDIS 1385 6060/253 17.2
VSwitch total 5026 22393/1057 82.1
Ethernet 143 521/48 5.3
TCP 279 1689/61 11.1
UDP 27 150/38 4.8
ICMP 190 2147/122 9.3
IPV4 78 556/61 7.4
IPV6 78 354/40 6.5
VXLAN 24 221/38 4.9

Figure 4. Using EverParse3D on various protocol formats

the latter only being provably equal to 2 + y (e.g., relying on
the SMT solver).
Exploiting the first Futamura (1971) projection, given a

concrete program t, we partially evaluate as_validator t by
reducing it on F★’s normalization-by-evaluation abstract ma-
chine. Having eliminated all the interpreter overhead (after
careful tuning of our definitions to make sure that every-
thing is arranged to reduce as much as we want), we first get
a fully applied term built from LowParse3D combinators
only, e.g., validate_pair validate_u32 validate_u32, which, after
some more partial evaluation on F★’s normalizer, produces
fully specialized first-order code that can be extracted by F★
to C. Once extracted to C, validating a pair looks like:
uint64_t positionAfterFst = ValidateU32(Input, StartPosition);
if (IsError(positionAfterFst)) { return positionAfterFst; }
return ValidateU32(Input, positionAfterFst);

Starting from our C-like 3D front end, we use SMT-assisted
refinement typechecking; followed by dependently typed
generic programming and a denotational semantics involv-
ing several layers of indexed-monadic semantics of parsers,
validators, and actions; then partial evaluation; finally yield-
ing idiomatic, high-performance, provably correct and safe
C code.

4 Hardening Windows Virtual Switch

Figure 4 summarizes a quantitative evaluation of EverParse3D
at work, including execution times of the tool running on
an Intel Core-i7 laptop. We have used it to specify hundreds
of message types spanning 11 networking protocols. Our
main experience has been its use in Windows Virtual Switch,
where we have deployed in a production setting more than
23,000 lines of verified C code produced by our toolchain.
Virtual Switch is a component in the Windows kernel

which provides para-virtualized access to the network to
enlightened virtual machine (VM) guests. The architecture

Figure 5. Layering of Virtual Switch protocols

of Virtual Switch is depicted in Figure 5. A component called
vSwitch runs in the privileged root partition of the host and
dispatches network packets to and from NetVsc, a compo-
nent running on the guest, and the host’s network inter-
face card. Since vSwitch runs in the host’s kernel, it cannot
trust NetVsc to send it well-formed messages. Conversely,
in some confidential computing scenarios (Microsoft Corp
2021; Russinovich 2021) NetVsc does not trust vSwitch either
and must properly validate the messages it receives.

The messages exchanged between vSwitch and NetVsc are
structured into several layered protocols. At the base layer, a
Hyper-V interface known as the VMBUS serves as the basic
transport for packets. A Virtual Switch packet on the VM-
BUS begins with an NVSP (Network Virtualization Service
Protocol) header. Some NVSP messages encapsulate RNDIS
(Remote Network Driver Interface Specification) messages,
which in turn contain either an Ethernet frame, or one of
several OIDs (Operation Identifiers). Each OID itself carries a
payload, which can include messages offloaded to a protocol
called NDIS (Network Driver Interface Specification).
So far, we have focused on specifying formats for NVSP,

RNDIS, OIDs, and NDIS in 3D, using 137 structs, 22 casetypes,
and 30 enum type definitions. While describing those mes-
sage formats required careful specification engineering and
discovery (some of these protocols involve proprietary for-
mats with a long history of evolution), because of our formal
guarantees of correctness and safety, the generated C code
can be deployed with confidence. To be clear, verified parsing
alone does not provide end-to-end formal assurances about
the entire Virtual Switch; however, it does address a common
source of vulnerabilities on its main attack surface. Based
on our experience, we are currently working on expanding
our coverage of verified parsers in the networking stack by
specifying and integrating verified parsers for Ethernet and
the TCP/IP protocol suite—Figure 4 also includes informa-
tion about our specification of these protocols, though these
are not yet released in production code, we are currently
working on their integration

Performance evaluation. Of course, Virtual Switch is
also a performance-critical component. A major concern was
whether adding additional input validation checks would re-
duce its performance. As such, we spent a substantial amount

Hardening Attack Surfaces with Formally Proven Binary Format Parsers PLDI ’22, June 13–17, 2022, San Diego, CA, USA

of effort on optimization, though sharing detailed perfor-
mance profiles on our production code is infeasible. However,
since EverParse3D parsers operate in place and, because of
their double-fetch freedom, guarantee to never read a mem-
ory locationmore than once, they are inherently fast. Further,
we designed our specifications and input validation strategy
in a layered manner, staying faithful to the layered protocol
structure and incrementally parsing each layer rather than
incurring the upfront cost of validating a packet in its en-
tirety before processing. For acceptance for deployment, our
verified parsers were required to introduce no functionality
regressions and incur no more than a 2% cycles-per-byte
performance overhead bar. Detailed internal measurements
comparing the performance of the old and new versions
of the code confirmed that we met both these targets. In
some configurations, our verified parsers were found to be
marginally faster than the prior handwritten code, since our
code is systematically designed to be double-fetch free hence
avoiding some copies that the prior code incurred. In sum-
mary, our parsers met internal "no-performance-regression"
goals which allowed the feature to go into production.

Security evaluation. The re-engineering of parsers in
Hyper-V’s Network Virtualization stack using EverParse3D
was motivated primarily as a way to improve security. As
with performance and functionality testing, our code was
also subject to security review and testing, and was deployed
only after passing this scrutiny. The full details of our secu-
rity reviews and tests are also hard for us to disclose, however
we summarize our process and findings below.

Security code reviews and tests were performed by a sepa-
rate team, independent from both the EverParse authors and
the Network Virtualization team. In addition to code reviews,
the security evaluation included a study of historic and open
security bugs that our work was aimed at addressing and
closed or would have closed.
Security testing included fuzzing efforts, which did not

uncover any bugs in our parsing code. An interesting anec-
dote is that once EverParse3D’s parsers were integrated
into Virtual Switch, several fuzzers stopped working effec-
tively, since their fuzzed input would always be rejected by
our parsers, preventing the exploration of deeper code paths.
We have subsequently been working with the fuzzing teams
to use our formal specifications to help design these fuzzers,
ensuring that the fuzzers only produce well-formed inputs.
This is an interesting synergy between formal verification &
specification projects and other bug-finding efforts.
Additionally, we have also fuzzed the code produced by

EverParse3D toolchain by running Sage (Godefroid et al.
2012) (an SMT-assisted whitebox fuzzer) on our code for
several days without uncovering any bugs.

Productivity and maintenance. Aside from the techni-
cal improvements to security, the use of EverParse3D also

increased the productivity of the team, with the engineer-
ing lead of the Network Virtualization team commenting
that EverParse3D enabled them to meet project timelines
that could not otherwise have been met. Additionally, while
maintaining our code in the Windows code base over the
past 18 months, EverParse3D ’s formal proofs of correctness
and security have provided confidence that code changes
don’t introduce unnecessary risk. For instance, once, when
doing a large refactoring of 3D specifications, we proved in
F★ that no semantic changes were inadvertently introduced,
by relating the initial and refactored specifications semanti-
cally. EverParse3D and its underlying toolchain, including
F★ and Z3, are also integrated with the build environment
of Windows, so that all developers can easily generate code
from 3D specifications as part of their regular builds.
Virtualized networking hardened with EverParse3D is

available broadly in Windows today, including in the recent
Windows 11 release. In this section, we highlight several
interesting elements of our work from each of the four pro-
tocols that we have addressed so far.

4.1 NVSP

The host vSwitch component handles 13 different kinds of
NVSP messages, where each message is packaged with a
MessageType tag, as specified below.

struct NVSP_HOST_MESSAGE {
UINT32 MessageType;
NVSP_HOST_MESSAGES(MessageType) Message; }

The message type NvspMessage1TypeSendRNDISPacket in-
dicates an enclosed RNDISmessage payload, including an off-
set into the packet buffer at which the RNDISmessage begins.
All the remainingmessage types involve fixed-size structures
of various kinds. As such, on the host side, when receiving
an untrusted NVSP message, our parsers check that it is a
valid NVSP_HOST_MESSAGE, and then the rest of vSwitch’s
code proceeds as usual: it inspects that MessageType tag and
based on it casts the Message field to the expected case of
NVSP_HOST_MESSAGES and proceeds.
On the guest side NetVsc component, things are a little

more subtle. The handling of incoming NVSP messages in
NetVsc was scattered in several parts of the code. We refac-
tored the code to isolate two points at which NetVsc handles
two flavors of incoming NVSP messages: five data messages
and seven completionmessages. Eachmessage is tagged with
a MesssageType, as in NVSP_HOST_MESSAGE shown above.

One of the data messages encapsulates an RNDIS message.
Of the remaining four, one of them is particularly interesting
since its payload includes S_I_TAB, a variable-length struc-
ture depicted by the diagram below, where the MessageType
field is held in the enclosing tagged union structure.

.-------------.
| v

.-------------.-------.--------.---------.---------.
| MessageType | Count | Offset | padding | Table |
.-------------.-------.- ------.---------.---------.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA N. Swamy, T. Ramananandro, A. Rastogi, et al.

This is easily specified in 3D as follows, where the caller
provides a MaxSize parameter to bound the entire size of
the message, and an out parameter in which to receive a
pointer to the beginning of the Table field. The predicate
is_range_okay(size, offset, extent) is a function in 3D’s library
which checks that extent ≤ size && offset ≤ (size − extent), en-
suring here that Offset points to the start of a Table field
large enough to hold an array of Count-numbered UINT32
elements—it turns out that in NetVsc, Count is expected to
be a constant. Additionally, Offset is expected to be at least
MIN_OFFSET = 3 ∗ sizeof(UINT32), since it must point after the
first three fields in the diagram shown above.

struct _S_I_TAB(UINT32 MaxSize, mutable PUINT8 ∗out) {
UINT32 Count { Count == /∗ Some constant ∗/ };
UINT32 Offset {

is_range_okay(MaxSize, Offset, sizeof(UINT32) ∗ Count) &&
Offset >= MIN_OFFSET };

UINT8 padding[:byte-size Offset −MIN_OFFSET];
UINT32 Table[:byte-size Count ∗ sizeof(UINT32)]

{:act ∗out = field_ptr }
}

4.2 RNDIS

The host vSwitch handles 9 types of RNDIS messages, while
the guest handles 11, each with several sub-cases. RNDIS
messages include both control-path and data-path messages,
the handling of the latter being particularly performance
sensitive. RNDIS packets on the data path may reside in
memory buffers that are shared between the host and guest,
to avoid the overhead of copying memory. However, validat-
ing and reading packets in shared memory is delicate, since,
for example, an adversarial guest can change the contents of
the packet while it is being validated at the host. To protect
against this, an important discipline is to validate and read
the packet in a single pass, never fetching any byte of the
packet more than once. Adhering to this discipline ensures
that the host observes a single logical snapshot of the packet
even in the presence of concurrent mutations by the guest,
inasmuch as what the host sees after a concurrent mutation,
the untrusted guest could just as well have put in the packet
to begin with. Relying on EverParse3D’s double-fetch free-
dom, we write parsers with actions that validate and copy
the input in a single pass into the local address space, and
further processing of the packet can continue without need-
ing to worry about concurrent mutations. We focus on the
handling of data path messages received at the host—the
specification on the guest side is analogous, though differs
in many details.
The main part of our 3D specification that handles data-

path packets is for a type called PPI_ARRAY, an array that
holds several structures, each of which must be validated
and copied into local memory owned by the host. The caller

passes in the total length of the enclosing packet, the ex-
pected size of the array, a bound on that size (asserted by the
where constraint, checked at runtime), and 12 out parameters
into which various parts of each PPI struct in the payload
array are to be copied.
struct PPI_ARRAY(UINT32 PacketLength,

UINT32 Expected, UINT32 Max,
mutable T1 ∗out1,..., mutable T12 ∗out12)

where (Expected <= Max) {
PPI(PacketLength, out1, ..., out12) payload[:byte-size Expected];

}

Each PPI is an encoding of a variable-length tagged union,
where the Size field records the length of the PPI_UNION and
the Type encodes its case. The format was designed originally
to allow for some padding between the end of the PPIOffset
field and the start of the PPI_UNION. However, since this
is a performance-critical data packet, it was decided that
padding was wasteful and should never be present, hence
the PPIOffset should always be 12 = 3 ∗ sizeof(UINT32).
struct PPI(UINT32 PacketLength, mutable T1 ∗out1, ...) {
UINT32 Size;
UINT32 Type : 31;
UINT32 IsTypeInternal : 1;
UINT32 PPIOffset { Size >= PPIOffset && PPIOffset == 12 };
PPI_UNION(Type, PacketLength, out1, ..., out12)
payload [:byte-size-single-element-array Size − PPIOffset]

}

Finally, PPI_UNION contains 12 cases, each populating one
of the out-parameters using an action.

4.3 OIDs and NDIS Offloads

The payload of some RNDIS messages contains an OID (Op-
eration Identifier) and potentially some operands. Our val-
idation of OIDs in NetVsc handles 56 different cases. The
operands for some of these cases are structures from the
NDIS protocol. One of the NDIS messages is particularly
interesting and is depicted below.
<---------- RDS_Size ---------->|<-- sizeof(ISO) * (i_0+...+i_n) -->|
.---.
| RD { I_0 } | ... | RD { I_n } | ISO | ... | ISO |
.---.

| |_ _ _^_ _ _ _ _ _ _ _ _ _ _ _^
|_________________________|

We have two adjacent arrays, one for RD structures and
another for ISO structures. The size of the RD array is known
by the context to be RDS_Size and the total size of the buffer
is also known. However, each RD entry contains a field I
which describes the number of ISO entries associated with
it, so the number of ISO entries is the sum of all the I fields
in the RD array. Further, each RD entry contains an Offset
field that describes the offset into the ISO array at which its
associated ISO entries begin. Of course, one could design a
simpler layout of this structure by interleaving the RD and
ISO arrays, but this layout is dictated by the NDIS standard.

Hardening Attack Surfaces with Formally Proven Binary Format Parsers PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Using 3D actions and their support for mutable state, we
were able to write a specification to check the layout of this
structure in a single pass. The type below takes two mutable
parameters RDPrefix, for the size of all the RD entries parsed
so far; and N_ISO, which holds the sum of their RD.I fields,
both initialized to 0 using an action on the start field.
struct _RD_ISO_ARRAY(UINT32 RDS_Size, UINT32 TotalSize,

mutable UINT32∗ RDPrefix,
mutable UINT32∗ N_ISO)

where (RDS_Size <= TotalSize) {
unit start {:act ∗RdPrefix = 0; ∗N_ISO=0; }
RD(RD_Size, RDPrefix, N_ISO) rds[:byte-size RDS_Size];
ISO(N_ISO) isos[:byte-size TotalSize − RDS_Size]
unit finish {:check return (∗N_ISO == 0) }}

When parsing each RD (using the specification below),
we increment (guarded by overflow checks) the size of the
prefix of RD entries parsed so far and sum the I field into
the N_ISO accumulator. We also check that the Offset field
points to the expected offset in the ISO array, skipping past
n_iso entries—the :check action allows an action to return a
boolean to signal whether or not parsing should continue.
struct RD (UINT32 RDS_Size, mutable UINT32∗ RDPrefix,

mutable UINT32∗ N_ISO) {
NDIS_OBJECT_HEADER ... Header; UINT32 I;
UINT32 Offset {:check
var prefix = ∗RDPrefix; var n_iso = ∗N_ISO;
if (/∗ overflow checks ∗/) {

∗RDPrefix = prefix + sizeof(RD); ∗N_ISO = n_iso + I;
return Offset == RDS_Size − prefix + n_iso ∗ sizeof(ISO);

} else { return false; } }}

Finally, when parsing the ISO array, we decrement the
N_ISO accumulator after parsing each entry and when we
reach the finish field of the _RD_ISO_ARRAY, we check that
no ISO entries remain to be parsed.
struct ISO (UINT32∗ N_ISO) {
NDIS_OBJECT_HEADER ... Header; ... /∗ other fields ∗/
UINT32 ISO_ID {:check
var n = ∗N_ISO;
if(n > 0) { ∗N_ISO = n − 1; return true; }
else { return false; }}}

This was the one message in our entire Virtual Switch
specification that relied on imperative code to validate in-
variants of the data format. In all other cases, actions were
only used to build (partial) parsed structures of the input
data. The ability to use actions to check intricate invariants
such as the one here speaks to their expressiveness. However,
such uses also make it harder to reason about the correct-
ness of our specification. For the future, we are considering
adding support for a small program logic to reason about
the behavior of imperative actions—this would allow us to
formally prove that our checks above correctly validate a
more abstract format description.

5 Related Work & Conclusions

Formally verified parsers and parser generators have re-
ceived a lot of attention in recent years. In summary, while
there have been many tools and frameworks for verified
parsers, EverParse3D appears to be unique in producing ver-
ified C code, while also handling a language of formats that
includes arbitrary refinement constraints, dependent pairs,
and untagged unions. The deployment of EverParse3D in
widely used commercial software also appears to be a first
for verified parser generators.

Blaudeau and Shankar (2020) build a verified packrat parser
for parsing expression grammars (PEGs) (Ford 2002, 2004) in
the PVS proof assistant (Shankar 1996). Lasser et al. (2019)
build a verified implementation of an LL(1) parser genera-
tor and Lasser et al. (2021) verified an implementation of
the ALL(*) parsing algorithm, both in the Coq proof assis-
tant (The Coq development team 1989). These lines of work
yield executable functional implementations for structured
grammars similar in expressiveness to context-free gram-
mars, and usable for, say, parsing programming language
syntax. In supporting arbitrary forms of refinement con-
straints, including arithmetic, while lacking recursion, 3D’s
expressiveness is incomparable to context-free grammars.
However, being based on monadic parser combinators, Ev-
erParse allows expressing context-sensitive grammars. Re-
cursion would certainly be useful to support some kinds of
grammars, e.g., in hierarchical document formats. However,
the unbounded structures that we have seen so far in net-
work packet formats (ranging from the examples shown in
this paper to message formats in higher level protocols like
TLS) have not required recursion; instead, arrays of various
flavors have sufficed. That said, in specific networking sce-
narios like protocol encapsulation, including features like
IP-in-IP, recursion would be useful, and we are considering
ways to add it to EverParse. Some of the challenges include
finding a good way to generically define inductively defined
trees for the representation type for a specificational recur-
sion parser combinator. Further, the use of recursion in the
Network Virtualization stack is generally discouraged, par-
ticularly in parsing, since this can result in adversarially
controllable stack depths, so ensuring that source grammars
never result in non-tail recursion is likely to remain an im-
portant restriction.

More closely related is the Parsley project (Mundkur et al.
2020), which extends PEGswith constraints and actions, with
verification-oriented tooling based on PVS, while also tar-
geting binary formats used in network protocols and other
systems applications. Enhancing EverParse3D to support
more of what Parsley offers in terms of expressiveness of the
grammar would be an interesting direction of future work.
In principle, being based on LowParse’s monadic parser com-
binators, EverParse3D should be amenable to such an ex-
tension, while offering high performance C code.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA N. Swamy, T. Ramananandro, A. Rastogi, et al.

Also targeting protocol formats, Ye and Delaware (2019)
use a Coq-based framework called Narcissus (Delaware et al.
2019) to develop purely functional parsers for Protocol Buffers,
a popular data exchange format. As mentioned in the intro-
duction, while the adoption of formats like Protocol Buffers is
a welcome trend away from hand-rolled formats and parsers,
it does not cater to the needs of high performance or legacy
applications where the wire format is already fixed.
The PADS project (Fisher and Walker 2011) developed

several tools to work with ad hoc data formats. Although,
to our knowledge, a verified implementation of PADS was
never built, its formalization has many similarities to our
work here. In particular, the PADS authors developed a new
dependently typed calculus DDC𝛼 in which to formalize
PADS, giving it three related denotational semantics in this
calculus, including a type denotation, a parser denotation,
and a metadata denotation. The type and parser denotations
are similar in spirit to our denotational semantics, though
we formalize 3D mechanically within an existing dependent
type theory (F★). Unlike PADS, our main denotation, the
validator denotation, provides a C-level semantics for our
language. PADS’ metadata denotation gives a semantics to
parsing errors and statistics that the tool tracks. Although
3D has no direct analog, our validator denotation includes a
semantics for parsing actions and error handlers, which can
be used to build application-specific metadata generators.
Further, our use of partial evaluation to extract a compiler
from our interpreter-based semantics, seems to be a novel
application of Futamura projections, at least in the context
of parser generators.

Also related is Bangert and Zeldovich’s (2015) Nail parser
and formatter generator. Analogous to 3D’s format and out-
put type specifications, Nail supports defining both a pro-
tocol grammar and its internal object model. However, by
excluding arbitrary semantic actions, Nail is able to sup-
port the generation of both parsers and formatters providing
transformations in both directions from the binary format
to the object model. The EverParse libraries underlying 3D
also support formatting, with proofs that formatting and
parsing are mutually inverse on valid data, however these
formatters are not leveraged by 3D. We are keen to explore
building on ideas from Nail to build formally proven parsers
and formatters from a single source specification.

Conclusions. Given the scourge of software security bugs
with root causes in parsing failures, tools that replace hand-
written, buggy parsers with trustworthy counterparts can
make a significant impact on software security and correct-
ness. EverParse3D’s push-button approach to generating
verified C code from high-level format specifications is an
appealing point in the design space. Its expressiveness cou-
pled with explicit control offered by parsing actions, while
yielding performant and double-fetch free C code, allowed

the system to meet the functionality, security, and perfor-
mance requirements of the Windows kernel. EverParse3D
is open source and available on GitHub.

Acknowledgments

We thank Justin Campbell, Jeffrey Tippet, Praveen Balasubra-
maniam, Randy Miller, Saruhan Karademir, Maxime Villard,
Lander Brandt, andmany others for discussions and feedback
that influenced the design, implementation, and adoption of
our system. We are also grateful to Jonathan Protzenko for
supporting the KaRaMeL tool, to Guido Martínez for work
on compiler plugins, to all the members of Project Everest
for many useful discussions, to the anonymous reviewers,
and to Tej Chajed, the shepherd of this paper.

References

Julian Bangert and Nickolai Zeldovich. 2015. Nail: A Practical Tool for
Parsing and Generating Data Formats. login Usenix Mag. 40, 1 (2015).
https://www.usenix.org/publications/login/feb15/bangert

Clement Blaudeau and Natarajan Shankar. 2020. A Verified Packrat Parser
Interpreter for Parsing Expression Grammars. In Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs
(New Orleans, LA, USA) (CPP 2020). Association for Computing Machin-
ery, New York, NY, USA, 3–17. https://doi.org/10.1145/3372885.3373836

Sergey Bratus, Lars Hermerschmidt, Sven M. Hallberg, Michael E. Locasto,
Falcon Momot, Meredith L. Patterson, and Anna Shubina. 2017. Curing
the Vulnerable Parser: Design Patterns for Secure Input Handling. login
Usenix Mag. 42, 1 (2017). https://www.usenix.org/publications/login/
spring2017/bratus

Adam Chlipala. 2021. Skipping the Binder Bureaucracy with Mixed Embed-
dings in a Semantics Course (Functional Pearl). Proc. ACM Program. Lang.
5, ICFP, Article 94 (Aug. 2021), 28 pages. https://doi.org/10.1145/3473599

Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan
Ye, and Adam Chlipala. 2019. Narcissus: correct-by-construction deriva-
tion of decoders and encoders from binary formats. Proc. ACM Program.
Lang. 3, ICFP (2019), 82:1–82:29. https://doi.org/10.1145/3341686

Kathleen Fisher and David Walker. 2011. The PADS project: an overview.
In Database Theory - ICDT 2011, 14th International Conference, Uppsala,
Sweden, March 21-24, 2011, Proceedings, Tova Milo (Ed.). ACM, 11–17.
https://doi.org/10.1145/1938551.1938556

Bryan Ford. 2002. Packrat parsing: : simple, powerful, lazy, linear time, func-
tional pearl. In Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming (ICFP ’02), Pittsburgh, Pennsylva-
nia, USA, October 4-6, 2002, Mitchell Wand and Simon L. Peyton Jones
(Eds.). ACM, 36–47. https://doi.org/10.1145/581478.581483

Bryan Ford. 2004. Parsing expression grammars: a recognition-based syn-
tactic foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2004, Venice, Italy,
January 14-16, 2004, Neil D. Jones and Xavier Leroy (Eds.). ACM, 111–122.
https://doi.org/10.1145/964001.964011

Yoshihiko Futamura. 1971. Partial evaluation of computation process-an
approach to a compiler-compiler. Systems, Computers, Controls 2, 5 (1971),
45–50. https://ci.nii.ac.jp/naid/10000032872/en/

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE:
whitebox fuzzing for security testing. Commun. ACM 55, 3 (2012), 40–44.
https://doi.org/10.1145/2093548.2093564

Sam Lasser, Chris Casinghino, Kathleen Fisher, and Cody Roux. 2019. A
Verified LL(1) Parser Generator. In 10th International Conference on Inter-
active Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA
(LIPIcs, Vol. 141), John Harrison, John O’Leary, and Andrew Tolmach

https://www.usenix.org/publications/login/feb15/bangert
https://doi.org/10.1145/3372885.3373836
https://www.usenix.org/publications/login/spring2017/bratus
https://www.usenix.org/publications/login/spring2017/bratus
https://doi.org/10.1145/3473599
https://doi.org/10.1145/3341686
https://doi.org/10.1145/1938551.1938556
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/964001.964011
https://ci.nii.ac.jp/naid/10000032872/en/
https://doi.org/10.1145/2093548.2093564

Hardening Attack Surfaces with Formally Proven Binary Format Parsers PLDI ’22, June 13–17, 2022, San Diego, CA, USA

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 24:1–24:18.
https://doi.org/10.4230/LIPIcs.ITP.2019.24

Sam Lasser, Chris Casinghino, Kathleen Fisher, and Cody Roux. 2021. CoStar:
a verified ALL(*) parser. In PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 20211, Stephen N. Freund and Eran Yahav
(Eds.). ACM, 420–434. https://doi.org/10.1145/3453483.3454053

Linux. 2021a. tcp.h. https://elixir.bootlin.com/linux/v5.15.1/source/include/
linux/tcp.h#L81

Linux. 2021b. tcp_input.c. https://elixir.bootlin.com/linux/v5.15.1/source/
net/ipv4/tcp_input.c#L4001

Microsoft Corp. 2021. Quickstart: Create Intel SGX VM in the Azure por-
tal. https://docs.microsoft.com/en-us/azure/confidential-computing/
quick-create-portal

Mitre Corp. 2020. Common Weakness Enumeration. https://cwe.mitre.org/
top25/archive/2020/2020_cwe_top25.html

Prashanth Mundkur, Linda Briesemeister, Natarajan Shankar, Prashant
Anantharaman, Sameed Ali, Zephyr Lucas, and Sean Smith. 2020. Re-
search Report: The Parsley Data Format Definition Language. In 2020
IEEE Security and Privacy Workshops (SPW). 300–307. https://doi.org/10.
1109/SPW50608.2020.00064

Jon Postel. 1981. Transmission Control Protocol. https://datatracker.ietf.
org/doc/html/rfc793

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ra-
mananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-
Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet, and
Nikhil Swamy. 2017. Verified Low-Level Programming Embedded in F*.
PACMPL 1, ICFP (Sept. 2017), 17:1–17:29. https://doi.org/10.1145/3110261

Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil
Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko. 2019. Ev-
erParse: Verified Secure Zero-Copy Parsers for Authenticated Message
Formats. In Proceedings of the 28th USENIX Conference on Security Sympo-
sium (Santa Clara, CA, USA) (USENIX Security 2019). USENIXAssociation,

USA, 1465–1482.
E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

IETF RFC 8446. https://tools.ietf.org/html/rfc8446
Mark Russinovich. 2021. Azure and AMD announce landmark in confiden-

tial computing evolution. https://azure.microsoft.com/en-us/blog/azure-
and-amd-enable-lift-and-shift-confidential-computing/

Natarajan Shankar. 1996. PVS: Combining Specification, Proof Checking,
and Model Checking. In Formal Methods in Computer-Aided Design, First
International Conference, FMCAD ’96, Palo Alto, California, USA, Novem-
ber 6-8, 1996, Proceedings (Lecture Notes in Computer Science, Vol. 1166),
Mandayam K. Srivas and Albert John Camilleri (Eds.). Springer, 257–264.
https://doi.org/10.1007/BFb0031813

Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué, and
Santiago Zanella-Béguelin. 2016. Dependent Types and Multi-Monadic
Effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). ACM, 256–270. https://www.fstar-
lang.org/papers/mumon/

The Coq development team. 1989. The Coq proof assistant. http://coq.inria.fr
Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. 2017.

How Double-Fetch Situations turn into Double-Fetch Vulnerabilities: A
Study of Double Fetches in the Linux Kernel. In 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, Vancouver, BC,
1–16. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/wang-pengfei

Qianchuan Ye and Benjamin Delaware. 2019. A Verified Protocol Buffer
Compiler. In Proceedings of the 8th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019).
Association for Computing Machinery, New York, NY, USA, 222–233.
https://doi.org/10.1145/3293880.3294105

Young-X. 2019. Git commit. https://github.com/torvalds/linux/commit/
9609dad263f8bea347f41fddca29353dbf8a7d37

https://doi.org/10.4230/LIPIcs.ITP.2019.24
https://doi.org/10.1145/3453483.3454053
https://elixir.bootlin.com/linux/v5.15.1/source/include/linux/tcp.h#L81
https://elixir.bootlin.com/linux/v5.15.1/source/include/linux/tcp.h#L81
https://elixir.bootlin.com/linux/v5.15.1/source/net/ipv4/tcp_input.c#L4001
https://elixir.bootlin.com/linux/v5.15.1/source/net/ipv4/tcp_input.c#L4001
https://docs.microsoft.com/en-us/azure/confidential-computing/quick-create-portal
https://docs.microsoft.com/en-us/azure/confidential-computing/quick-create-portal
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://doi.org/10.1109/SPW50608.2020.00064
https://doi.org/10.1109/SPW50608.2020.00064
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://doi.org/10.1145/3110261
https://tools.ietf.org/html/rfc8446
https://azure.microsoft.com/en-us/blog/azure-and-amd-enable-lift-and-shift-confidential-computing/
https://azure.microsoft.com/en-us/blog/azure-and-amd-enable-lift-and-shift-confidential-computing/
https://doi.org/10.1007/BFb0031813
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
http://coq.inria.fr
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://doi.org/10.1145/3293880.3294105
https://github.com/torvalds/linux/commit/9609dad263f8bea347f41fddca29353dbf8a7d37
https://github.com/torvalds/linux/commit/9609dad263f8bea347f41fddca29353dbf8a7d37

	Abstract
	1 Introduction
	1.1 Low-level Binary Format Parsing, with Proofs
	1.2 Contributions

	2 A Tour of 3D
	2.1 Structures, Dependency, Refinements
	2.2 Value-parameterized Types
	2.3 Casetype: Contextually Discriminated Unions
	2.4 Variable-Length Data
	2.5 Parsing Actions
	2.6 Putting it together: Parsing a TCP Header

	3 Implementing EverParse3D
	3.1 Parsers, Validators, and Readers
	3.2 A Type System for 3D
	3.3 Three Related Denotations

	4 Hardening Windows Virtual Switch
	4.1 NVSP
	4.2 RNDIS
	4.3 OIDs and NDIS Offloads

	5 Related Work & Conclusions
	Acknowledgments
	References

