
Project Everest: Perspectives from Developing

Industrial-grade High-Assurance Software

Project Everest Team

May 28, 2025

Abstract

Project Everest began at Microsoft Research in 2016, aiming to spur
research in program verification to produce industrial-grade software. In
collaboration with INRIA and Carnegie Mellon University, Project Ever-
est’s goal was to produce drop-in verified replacements of secure com-
munications software used in the HTTPS ecosystem, including TLS, the
underlying cryptography, and related sub-protocols. Now, nearly 9 years
later, we reflect on the project, sharing both its successes and failures,
and look ahead to the next decade of program verification research.

1 Introduction

Project Everest was initiated in 2016 at the instigation of Jeannette Wing, then
director of Microsoft Research (MSR). Inspired by the Expeditions in Comput-
ing1 program which she had helped create at the National Science Foundation,
Wing sought to spur ambitious, multi-year industrial research programs by cre-
ating an Expeditions program at MSR. An internal call for proposals was issued,
with funded proposals supported for 3-5 years by MSR, above and beyond reg-
ular support, with dedicated funds for additional interns, developers, facility
needs, and visitors.

In the second year of the MSR Expeditions program (for 2016), four of the
present authors (Fournet, Hawblitzel, Parno, and Swamy) submitted a proposal
titled Deploying a Verified Secure Implementation of the HTTPS Ecosystem.
The HTTPS ecosystem was broadly recognized as crucial to Internet security,
and a series of high-profile attacks had raised awareness of the underlying flaws
both in the design of the core TLS [163] protocol (c.f., attacks such as LogJam2)
and in widely used implementations (c.f., attacks like Heartbleed3 and Apple’s
GOTO Fail4). MSR had deep expertise in cryptography and security, as well
as program and protocol verification spread across several labs, and we saw

1https://www.nsf.gov/cise/ccf/expeditions-awards
2https://weakdh.org/
3https://heartbleed.com/
4https://www.imperialviolet.org/2014/02/22/applebug.html

1

https://www.nsf.gov/cise/ccf/expeditions-awards
https://weakdh.org/
https://heartbleed.com/
https://www.imperialviolet.org/2014/02/22/applebug.html


Figure 1: Architecture of proposed Everest software, circa 2016

producing verified implementations of components of HTTPS as an opportunity
to work together on an ambitious, impactful goal. Additionally, a new version of
the protocol, TLS-1.3, was being drafted then at the IETF, and we anticipated
that working on verifying the protocol could help improve the standardization
process, and also help software teams that would need to implement the new
standard.

Our proposal was approved and funded in 2016. It was initially named
ImPS (for Impervious Protocol Security) but by the spring of 2016 it had been
renamed to Everest, a recursive acronym: Everest Verified End-to-end Secure
Transport. We had milestones set for a five-year period, including both research
outcomes as well as anticipated deployments. Figure 1 shows the components
we were targeting. Of course, the trajectory of the project evolved significantly
as it progressed, something we reflect on throughout this paper.

In a 2017 paper [29], we described Project Everest as “a new joint project
between Microsoft Research and INRIA that aims to build verified software com-
ponents and deploy them within the existing software ecosystem.” At that point,
although research in software verification had progressed sufficiently to enable
the development of substantial end-to-end verified artifacts [32, 88, 94, 95, 110,
125, 176], few artifacts had reached the maturity and modularity needed to
enable commercial deployment. By targeting the HTTPS ecosystem, we be-
lieved we could provide “a large boost to software security” by developing high-
assurance components that could be deployed piecemeal, rather than requiring
a wholesale replacement of the software stack, as would be required if one were
to offer, say, a verified operating system.

However, as the project name “Everest” suggests, we recognized that pro-
ducing a verified implementation of TLS and all its associated sub-protocols and

2



algorithms would require a monumental effort.5 At its inception in 2016, the
project was slated to take 5 years and already included a large team with ex-
pertise in programming languages, program verification, systems, security, and
cryptography. We had 21 researchers and engineers at Microsoft Redmond and
Cambridge, three from INRIA (Paris), and one from LRI (Orsay), indicating
their interest to participate at different levels of involvement.

Eventually, the team grew to be distributed across three institutions in five
main locations: Microsoft Research (Redmond, Cambridge, and Bangalore),
Carnegie Mellon University (Pittsburgh), and INRIA (Paris), along with many
contributors from other places, including Edinburgh, Scotland; Rosario, Ar-
gentina; Bochum, Germany; and Tallinn, Estonia. In addition, many interns
and PhD students contributed substantially to the work. Our collaboration was
enabled by an open source model, with all development on GitHub, with all
stakeholders recognizing the importance of conducting security research in the
open and inviting public scrutiny. A full list of contributors is in Appendix A.

Geographic distribution was a challenge. We tackled this, in part, by gath-
ering every six months in either Europe or the United States for an in-person
“all-hands” meeting, which was very useful for cohesion, planning, and build-
ing team spirit. However, starting with the pandemic in 2020, these in-person
gatherings ceased and the project became less close-knit. We also used a Slack
instance for most team communications, using separate channels for each sub-
project; membership grew to several hundred members in total. Subsequently,
many of these sub-projects migrated to their own public discussion forums on
Zulip.

The core of Project Everest was, roughly, the fusion of two teams: security
and systems researchers who had been using Dafny [123] as part of the Iron-
clad [95] and IronFleet [94] projects; and programming languages and security
researchers who had been developing F⋆ [182] and using it for the miTLS [32]
project. Ironclad was recognized as a significant milestone in developing veri-
fied systems and included a small but complete end-to-end verified stack, in-
cluding an OS kernel; drivers; system and crypto libraries including SHA,
HMAC, and RSA; and four “Ironclad apps”. Further, IronFleet proved the
safety and liveness of several complex distributed protocol implementations, in-
cluding Paxos [117]. miTLS was also well recognized in the research community,
with some its authors winning the Levchin Prize for it in 2016, for analysis of
TLS-1.2 and developing tools for formal proofs of protocols.6

We debated at length the choice of language and tools, which we summarize
in Section 2.1.1. The plan we settled on involved developing verified code in F⋆,
a proof-oriented programming language, together with several domain-specific
languages (DSLs) embedded in F⋆. A project of this scale had not yet been
attempted in F⋆, so we anticipated enhancing the language and its tooling as we

5Amusingly, Google’s Project Wycheproof (https://github.com/C2SP/wycheproof), a se-
curity testing suite for cryptographic primitives, is named after Mount Wycheproof, sometimes
called “the smallest mountain in the world”. Their motto is: “The smaller the mountain the
easier it is to climb it!”, a tongue-in-cheek reference to Project Everest’s opposite approach.

6https://rwc.iacr.org/LevchinPrize/winners.html#mitls

3

https://github.com/C2SP/wycheproof
https://rwc.iacr.org/LevchinPrize/winners.html#mitls


went along. We planned to prove all of the code at least functionally correct in
F⋆, and then extract it to existing languages, like C and assembly, for integration
within existing software projects. The verified code itself was to include the
following:

1. Cryptographic primitives and constructions, in C and assembly, including
support for all the main cipher suites used in TLS, at a performance
comparable to existing, unverified implementations.

2. The ASN.1 data description language [103] and, specifically, support for
X.509 public key certificates [54], as well as the code necessary to validate
X.509 certificate chains.

3. The TLS protocol, including support for both TLS-1.2 and TLS-1.3, cov-
ering both the record-layer and handshake sub-protocols, with idealized
code serving as a cryptographic specification.

4. The HTTPS protocol, particularly the many subtle web security issues
around it [6, 49], e.g., for cookie management, and content security poli-
cies.

Looking back, we accomplished much (but not all) of what we set out to do,
though, as may be expected, the project’s course and goals were revised multiple
times. Most significantly, we did not tackle the HTTPS protocol itself. Rather,
we focused on the layers beneath it, including TLS and also QUIC [118]. While
we did offer fully verified, high-performance implementations of the record-layer
protocols for TLS and QUIC, we did not complete verifying our implementation
of the TLS handshake, though we did produce a detailed pen-and-paper proof of
its cryptographic security, developing a novel technique for cryptographic proofs.
On the other hand, we spent a significant effort working on things that were
not in our original project plan, reacting to various opportunities and changes
in the landscape as they occurred (e.g., QUIC).

Figure 2 summarizes our various contributions and the relationships among
them. At the time of writing, a full build of Project Everest takes about 2 hours
on a build server with 24 threads, building repositories with a total of about
1.3 million lines of non-auto-generated F⋆ source text. The build issues around
66,000 SMT queries to automatically discharge around 622,000 separate proof
obligations, producing around 4,200 checked F⋆ files. We do not have an easy
way to count proof obligations discharged without the use of an SMT solver,
e.g., proofs by unification, normalization, or tactics. The overall proof-to-code
ratio is highly variable—some projects do not produce any verified executable
code, instead offering verification libraries only; others offer code generators
that automatically produce large amounts of verified code from specifications.
The largest project with human-authored source extracted to executable code,
HACL⋆, contains about 245,000 lines of F⋆ and Vale source files, and yields
about 135,000 lines of verified C and assembly code.

Our contributions can be grouped into four areas: verification tools and
methodologies; cryptographic algorithms; data formats and parsing; protocol

4



Figure 2: The Architecture of Project Everest, with arrows indicating
dependences among components, omitting transitive dependences. Z3 was de-
veloped independently. The TLS Key Schedule and State Separating Proofs are
pen-and-paper formalizations. All the rest were implemented and proven correct
in F⋆. The proof of the TLS-1.3 handshake in miTLS-fstar was left incomplete,
and, as such, is shown in a different color. Many tools and techniques continue
to be developed within this same framework after Project Everest, e.g., Pulse.

5



modeling and verification. In spanning these areas, Project Everest was per-
haps unique in its co-development of (i) verification tools and methodologies,
(ii) modeling and verification of complex systems and their properties, and
(iii) actual deployment of verified software. Many offshoots of Project Everest
are active today, furthering research in these and other areas.

Verification Tools and Methodologies Project Everest was instrumen-
tal in the development of F⋆. Indeed, many of the language’s features, sub-
languages, and libraries were developed specifically to address the needs of
Project Everest, and one could reasonably say that the language and its ap-
plications were co-designed. F⋆ today supports nearly a dozen DSLs, each
catering to a particular kind of programming and program verification task.
Tooling surrounding F⋆, notably the KaRaMeL compiler, extracts code writ-
ten in low-level F⋆ dialects (specifically, a DSL called Low⋆ [154]) to C (and
recently also Rust [80]), and such code is deployed in a variety of commer-
cial products, ranging from Windows to Firefox. The verification tools and
methodologies developed by Project Everest are documented in several pa-
pers [4, 5, 78, 81, 86, 132, 154, 184].

Post-Everest: Today, more than a million lines of code and proof are main-
tained in F⋆’s continuous integration (CI) pipeline, even as the language con-
tinues to evolve. Further, lessons learned from using and developing F⋆ inform
newer verification tools, including Pulse [69] for proofs in concurrent separa-
tion logic, and Hax [31], Verus [119, 120] and Aeneas [97], which target the
verification of Rust programs.

Cryptographic Primitives Cryptographic primitives and constructions have
abstract mathematical specifications, coupled with security-critical, high-perf-
ormance implementations in languages like C and assembly. This makes them
ideal candidates for verification, and indeed, over the past decade, there has
been a flourishing effort across multiple research groups aiming to verify crypto-
graphic primitives [7, 12, 64, 72, 190]. Project Everest produced comprehensive
libraries of cryptographic implementations, covering a broad range of cipher
suites, in C (HACL⋆) and in assembly (ValeCrypt), coupled with a crypto-
graphic provider (EverCrypt) providing high-level interfaces suitable for use in
a variety of applications. Verified cryptographic implementations from Project
Everest are now deployed in many commercial products, including Mozilla
Firefox, the Linux kernel, Python, mbedTLS, the Tezos blockchain, the Elec-
tionGuard electronic voting SDK, and the WireGuard VPN. At the time, our
implementations of AES-GCM in assembly and Curve25519 in a mixture of C
and assembly were the fastest implementations available, verified or not, and
they continue to be competitive. The underlying research is documented in
several papers [37, 79, 98, 149, 153, 211].

Post-Everest: Lessons learned from our efforts inform new cryptographic
verification projects, including notably on post-quantum algorithms [109] and
simplifying the verification of cryptographic routines that run on heterogenous

6



hardware platforms [208].

Data Formats and Parsing Processing binary formatted data packets is
a routine task in protocol implementations, yet it is easy to get wrong and
has been the source of many security critical bugs, including in the HTTP
ecosystem [106]. In cryptographic settings, it is also important for the formats
themselves to be non-malleable, e.g., an attacker should not be able to alter
a binary message without also changing how it is parsed. To process such
formats, we developed EverParse [157], a verified parser and serializer generator
for non-malleable binary formats. Initially, we used EverParse for TLS protocol
messages. We also used EverParse to formalize ASN.1, the language in which
X.509 certificates are described, and produced the first proof of security of its
distinguished encoding rules [139], though our executable code for ASN.1 was
only extracted to OCaml rather than to efficient, low-level C code.

However, the potential uses of EverParse were broader than we expected.
Many low-level software components need to parse attacker-controlled binary
formatted data, and a tool that generates secure code for this task proved to
be more broadly useful. Working closely with engineering teams from Windows
Networking, we designed 3D, a language for specifying ad hoc, binary formatted
data, and used EverParse to generate verified C code to parse binary messages
specified in 3D [183]. This has been particularly useful in Microsoft Azure’s
network virtualization stack, where since 2021, every network message, on both
ingress and egress, has all its encapsulation headers validated and parsed with
EverParse, helping to defend against attacks from both network adversaries and
potentially malicious virtual machine guests that could otherwise compromise
the security and integrity of the host kernel.

Post-Everest: More recently, with learnings from EverParse, the next gener-
ation of formatting tools have emerged, including PulseParse [158], a framework
building on EverParse in Pulse to handle recursive formats including in stan-
dards such as CBOR [38] and CDDL [34] and producing C or Rust code, and
Vest [48], an EverParse-inspired generator of fast and secure Rust parsers &
serializers verified using Verus.

Protocol Analysis and Verification Everest’s implementation of TLS was
based on miTLS (Microsoft-Inria TLS) [32], an executable, verified implementa-
tion of TLS-1.2 initially developed in F# and verified using F7 [20], a refinement
type checker for F#. However, miTLS was not intended for deployment, being
implemented in high-level, purely functional F#. We aimed to re-implement
miTLS in Low⋆ with an F⋆ specification, extending it to support both TLS-1.2
and TLS-1.3, and to produce C code, with proofs of functional correctness and
cryptographic security, i.e., proving the protocol design and its implementation
correct and secure. For clarity, we dub this new version miTLS-fstar. We suc-
ceeded in parts of this effort, although we did not reach the full end-to-end
protocol verification that we had initially aimed for.

We spent a considerable effort trying to develop a mechanically checked cryp-

7



tographic proof of security for the TLS handshake, as implemented in miTLS-
fstar. Towards this end, we developed a new methodology for cryptographic
proofs called state-separating proofs [45],7 using it to develop a detailed pen-
and-paper proof of cryptographic security for the TLS handshake, including
its main key schedule [44]. However, due to a variety of factors, including the
shifting priorities of a large team, we did not manage to translate this pen-and-
paper proof to the verified code of miTLS-fstar. Nevertheless, miTLS-fstar is a
complete implementation of TLS-1.3 and interoperates with other implementa-
tions. Although it lacked a full proof for the handshake, miTLS-fstar did have
a verified, high-performance implementation of the TLS-1.2 and TLS-1.3 record
layer protocols [61]—the first such end-to-end proof for those sub-protocols.

In addition, during the project, the QUIC protocol [118] emerged as an
important variant of TLS running over UDP, and we produced a verified imple-
mentation of its record layer as well [62]. miTLS-fstar’s (unverified) handshake
can also be used independently for QUIC, together with a small runtime library,
and this implementation was used by initial versions of WinQUIC, the Windows
implementation of QUIC.

The results of our protocol analysis and implementation efforts also revealed
several issues in the TLS-1.3 specification while it was being drafted, and these
issues were fixed before the protocol was standardized [163]. The final TLS-
1.3 RFC acknowledges the attacks and fixes discovered by several members of
Project Everest, including them as contributors and citing several papers.

Post-Everest: Building on lessons learned from Project Everest, the SSProve
tool has adopted the state-separating proofs methodology and developed an
embedded language for cryptographic proofs in the computational model in
Rocq [93].8 Additionally, the DY* framework [25] embedded in F⋆ was de-
veloped to enable modular proofs of cryptographic protocols in the symbolic
model. In contrast, the Owl tool [84] provides type-based verification of com-
putational security for protocol designs and automatically produces verified im-
plementations in Rust [173]. These tools have been used to produce security
proofs of a range of related protocol standards, including MLS [43, 195], in the
computational and symbolic model respectively—Wallez et al. were awarded
a prestigious Internet Defense Prize9 for their work on proving the security of
TreeSync, a key sub-protocol of MLS, using F⋆ and DY*. Further, recently, a
proof of cryptographic security for TLS-1.3 was proven for Bertie,10 a Rust im-
plementation of TLS-1.3, using Hax, F⋆, SSProve, and Proverif (cf. Section 5).

1.1 Outline & Summary of Takeaways

In the rest of this paper, we summarize our core research contributions; the
technical work has already been documented extensively, so we focus on some

7The methodology was independently invented by Mike Rosulek and is the basis of his The
Joy of Cryptography text book.

8Rocq is the new name of the Coq proof assistant.
9https://www.usenix.org/blog/usenix-announces-winners-2023-internet-defense-prize

10https://github.com/cryspen/bertie

8

https://www.usenix.org/blog/usenix-announces-winners-2023-internet-defense-prize
https://github.com/cryspen/bertie


of the non-technical aspects not covered in prior publications (Section 2). We
then discuss our experience with industrial deployments, relating some factors
that contributed to our successes (and failures) (Section 3). We then reflect on
challenges (Section 4) and conclude with some thoughts about directions for the
future (Section 5). We summarize a few main takeaways, below:

• Formally verifying industrial-grade software at scale is feasible, though
it still requires considerable effort. It is possible for engineers and proof
experts to develop a large body of formally verified code (at the scale of
a million lines of software) and maintain it over several years.

• Employing higher-order coding, specification, and proof styles, can sim-
plify proofs, promote abstraction and reuse, and when used in combination
with metaprogramming can yield large amounts of efficient verified code
at a lower proof overhead, and with zero-cost abstractions. However, de-
vising such proof styles requires a high-level of expertise and fluency with
advanced proof techniques.

• Research-grade proof tools need a significant engineering investment to
enable productivity at scale. Many of the engineering challenges of proof
development & maintenance are similar to regular software engineering.
However, proof engineering itself presents unique challenges, and balancing
tradeoffs between proof automation and predictability remains an impor-
tant research problem.

• Deployments of verified software require careful tradeoffs between formal
guarantees, practical utility, and ergonomic usage. While minimizing the
trusted computing base (TCB) is important, it is not always the leading
factor in enabling adoption.

• There is a widespread awareness of the value of software proofs, particu-
larly in parts of the industry that build mission-critical software. Proof-
backed software is a strong differentiator and allows a small team of ex-
perts to deliver a component at a quality that would traditionally require
a much larger team.

• Cryptography and security protocols are a great domain for software
proofs, since they are at the crux of the security of many systems, and
have clear end-to-end security and correctness specifications. However,
software proofs need not cover end-to-end system guarantees to be of
value; e.g., systematically eliminating classes of vulnerabilities in specific
software components is also broadly appreciated.

• Developing components that can be integrated piecewise is a successful
path towards deployment. Producing large monolithic systems, even when
designed as drop-in replacements, requires too much integration work and
ultimately might still not fulfill all the requirements of the systems they
are trying to replace.

9



• Project Everest targeted standards-based software, anticipating that exist-
ing implementations could be replaced by a verified, standards-compliant
alternatives. However, we also worked on replacing implementations of
non-standard software (e.g., proprietary components of the Windows ker-
nel). In such cases, the effort spent on discovering the specification of an
existing software component can be substantial and tools to assist with
specification discovery and validation (e.g., differential testing) are valu-
able.

• Although Project Everest focused specifically on co-developing a new lan-
guage for program proofs with its applications, future projects might con-
sider aiming to integrate proof technology within existing languages, po-
tentially broadening the reach of the proof techniques. That said, the
overhead of authoring proofs remains high and optimizing the develop-
ment experience for proof-authoring over code-authoring might continue
to make sense. Hybrid approaches that use distinct tools for code author-
ing and proof development may also be viable.

• Two emerging trends augur well for reducing the cost of formal proofs.
First, advances in programming languages, program logics, and proof
tools continue to lower the cost of program proof. Notably, Rust as a
systems language offers strong built-in memory safety guarantees, elim-
inating some proof obligations. Second, the emergence of generative AI
models has triggered a burst of interest in using AI to automate a variety
of specification, proof authoring, and maintenance tasks, aiming to lower
the expertise needed to use proof-oriented languages.

A note on the authors This document was written by Chris Brzuska,
Aymeric Fromherz, Markulf Kohlweiss, Guido Mart́ınez, Bryan Parno, Jonathan
Protzenko, and Nikhil Swamy. However, it describes the work and insights of
a large team of people who contributed to Project Everest over the course of
several years. A full list of contributors to Project Everest is in Appendix A.

2 Core Research Contributions

In this section, we present a brief overview of the main research contributions
of Project Everest. These results were published in dozens of peer-reviewed
papers, though we provide here a bird’s eye view, focusing on the main themes
of our work rather than on specific results, in four main areas: program proof
tools, verified cryptography, parsers & serializers, and protocols.

2.1 Program Proof Tools

A basic tenet of our methodology was to build verified software from scratch,
rather than attempting to verify existing implementations developed in other,
general-purpose languages. We believed strongly, both then and now, that

10



structuring code with proofs in mind would make the verification process more
tractable. This view was also informed by experience in the broader program
verification community, where projects had generally succeeded when build-
ing verified software from scratch [110, 125]. We also strongly believed in the
promise of using SMT solvers (notably Z3 [60]) integrated with proof-oriented
programming languages, to build verified software at scale.

2.1.1 Choosing a Language

An initial challenge was to consolidate on a single language. The project was
initially a mixture of Dafny and F⋆, reflecting our backgrounds. In fact, the first
version of Vale, our assembly language verifier (Section 2.1.6), was built using
Dafny [37], and a later version was built using F⋆ [78]. As one can imagine,
there were strong incentives to consolidate on a single tool, for many reasons.
Maintaining and improving two tools was too costly, and we wanted to provide a
single theorem to cover all of our verified code, which would have been (and still
is!) hard to achieve when using multiple proof frameworks. There was much
debate about the pros and cons of each language, some of which we summarize
below.

In Dafny’s favor:

• Dafny was more mature in 2016, had a better IDE, and better error mes-
sages when SMT proofs failed.

• Dafny had already been used to build complex verified systems like Iron-
clad (which included verified cryptographic primitives) and IronFleet,
whereas the existing experience with F⋆ was more on applications related
to compilers and programming languages.

• Dafny had built-in support for imperative programming and its syntax
was more familiar to systems programmers.

In F⋆’s favor:

• By 2016, F⋆ had acquired a C backend through Low⋆ and KaRaMeL,
while Dafny focused on producing C# code.

• F⋆ was more expressive than Dafny, supporting higher-order programming
as well as higher-order proofs.

• F⋆ could model deallocation of memory, and distinguish stack and heap
allocated memory, whereas Dafny’s logic assumed the use of a garbage
collector.

• F⋆ supported type abstraction and modularity, important for the style of
cryptographic proofs we aimed to do.

• miTLS, a centerpiece of the project, was developed in F# and F7, with
parts of it already ported to F⋆.

11



• F⋆’s dependent type checker already provided support for proofs by nor-
malization, higher-order unification, and symbolic execution—it later evolved
to also support tactic-based proofs. As such, it was less dependent on
SMT-only proofs.

• Perhaps most significantly, the F⋆ language developers were closely in-
volved in the project and willing to evolve F⋆ to meet the goals of Project
Everest.

After considering all of these arguments and much debate, we eventually
consolidated around F⋆, though using a young language at a large scale was
also a major source of risk, and improving the language consumed a significant
portion of the project’s resources. Nevertheless, we also saw it as an opportunity
to drive F⋆’s development.

It is also worth mentioning that the Lean proof assistant [59] was being
developed at MSR at the same time. However, Project Everest was heavily ori-
ented towards using SMT solvers for proof automation, rather than interactive
proof in a system like Lean. We did aim to use Lean as an interactive proving
backend for some kinds of proof obligations produced by F⋆, but despite some
work in this direction, the difficulties of integrating Lean with F⋆, given subtle
logical differences (e.g., Lean is intensional whereas F⋆ is extensional) were too
great.

Evolving F⋆ Originally designed & implemented in 2011 [180], F⋆ built on two
prior languages from MSR, F7 [20] and Fine [179]. F⋆ circa 2011 was notable for
its combination of affine and (value-)dependent types. By 2015, we had found
that this system was insufficiently expressive for the kinds of proofs we wanted
to do, and that the affine types added a lot of complexity to F⋆’s metatheory.
As such, in 2015, the language was completely redesigned and re-implemented,
jettisoning affine types,11 and generalizing it to support full dependent types,
rather than just value dependency.

In terms of language features and verification methodology, a few main
themes stand out: The development of effect systems in F⋆; embedded DSLs
for low-level code, notably Low⋆ and Vale; extensive use of higher-order pro-
gramming and metaprogramming, combined with compile-time specialization;
and the emergence of a proof style that used SMT solving heavily, but with the
strategic use of proofs by normalization, reflection, and tactics for better proof
performance and predictability.

2.1.2 Effect Systems in F⋆

A core organizing principle of F⋆ is its integration of an effect system to en-
able imperative programming with side effects to be smoothly integrated within

11With the benefit of hindsight, given the remarkable trajectory of Rust and its use of affine
types, one might argue that F⋆ should have retained support for affine types, allowing it to
more easily verify Rust-style code today.

12



a dependently typed logic. The essential idea is to represent programs in an
implicitly monadic form that enables a generic form of verification condition
generation, through the use of Dijkstra monads [185]. Dijkstra monads were
further developed in a sequence of papers [5, 130, 182] and several other works.
Others have continued to study Dijkstra monads in a variety of settings, for
relational proofs [131], for infinite program executions [172], for secure compi-
lation [10], and other applications.

For Project Everest, we primarily used Dijkstra monads to model effects
of mutable state and non-termination, specifically in the definition of Low⋆,
described next. Later, we also used it in the definition of a metaprogramming
language, as described in Section 2.1.7.

Additionally, we developed a methodology for proving relations among pro-
grams, particularly probabilistic equivalences [86]. At one stage, we had hoped
to use this framework to conduct cryptographic proofs based on probabilistic
equivalences; however, it was technically very difficult for our relational proofs
to scale to handle all of TLS. Nevertheless, others used our Dijkstra monad-
based relational framework to analyze TLS extensions (such as Encrypted Client
Hello [164]) to prove various indistinguishability-based privacy properties [127].

Further innovations on F⋆’s effect system have generalized it to support
arbitrary indexed effects, beyond Dijkstra monads [160]. F⋆’s effect system
has also been used in secure compilation—an active area of ongoing research–
enabling verified code to securely interoperate with unverified contexts [10].

2.1.3 Low⋆: A Shallow Embedding of a C-like Language in F⋆

Low⋆ [154] is a subset of F⋆ modeled after a fragment of C, with support for
mutable state, pointers, arrays, stack and heap allocation, and machine integers.
It is designed primarily to support proofs of array-manipulating sequential C
programs, such as those used in cryptographic routines. Low⋆ grew from pre-
vious prototypes which had aimed for a more general language design, aiming
to support a mixture of garbage-collected and explicitly managed memory, in-
spired in part by Cyclone [104, 181], but built on top of the OCaml runtime.
This proved to be too complex, and we eventually preferred a design that is
closer to C, with explicit memory management.

The core program logic of Low⋆ is a Hoare-style logic with dynamic frames [108],
similar in spirit to Dafny, though developed as verified libraries rather than as
language primitives. Using libraries allowed us to gain trust in our memory
models, and perhaps more importantly, allowed us to develop several iterations
of Low⋆’s proof-oriented libraries to enable expressing footprints of heap data
structures abstractly, and to try different strategies for proof automation. An
important aspect of Low⋆ is its incorporation of a logic of monotonic state [4],
which we used to model features such as the idealized state of a distributed
system, e.g., global logs of all messages exchanged in a protocol. For all of this,
the expressive power of F⋆’s higher-order, dependently typed logic was crucial.

Low⋆ was used extensively in Project Everest—HACL⋆, EverCrypt, Ever-
Parse, and miTLS were all developed in Low⋆. The general proof style involved

13



proving the code in Low⋆ correct against a low-level functional specification;
followed by a proof in F⋆ relating the low-level functional specification to a
more abstract high-level functional specification. This two-step process allowed
factoring the proof effort, enabling different people to work on the two parts
of the proof in parallel, and for a separation of concerns between reasoning
about memory footprints and the absence of undefined behaviors from the high-
level functional intent. Shallowly embedding Low⋆ in F⋆ enabled Low⋆ code to
be metaprogrammed, or assembled from higher-order combinators, promoting
proof reuse and genericity—we remark more on this shortly. Ultimately, using a
variety of proof styles, more than 100,000 lines of code were written and verified
in Low⋆ by hand, and still more code was generated by metaprogramming.

Others used Low⋆ too, building verified garbage collectors for OCaml [171],
verified measured boot firmware [186], and even as the basis of other DSLs such
as for verifying reactive systems [168].

2.1.4 Revisiting Low⋆ with Separation Logic & Concurrency

With experience, we identified patterns of usage for Low⋆ that made it possible
to develop the integer-array-processing code typical in HACL⋆. However, after
completing a few significant proofs in Low⋆, including as early as a 2017 proof
of the TLS record layer [61], we had also come to realize that reasoning about
memory footprints in Low⋆ was difficult and scaled poorly to data structures
with many pointers.

Despite a significant revision of the Low⋆ libraries, which improved the situa-
tion somewhat, the core of the problem was that Low⋆ proofs of heap properties
are entirely dependent on SMT solving, and we found that proofs of programs
that involved more than a few disjoint mutable memory locations, or program
fragments that involved longer chains of mutations often could not be verified
automatically in a reasonable amount of time, requiring the user to supply ad-
ditional lemmas and assertions. This is particularly pronounced when verifying
pointer data structures: since Low⋆ lacked any structural notion of separation,
proofs of such programs, though possible, are often very tedious and slow.

For instance, a doubly-linked-list library took one team member more than
six months to complete, requiring many layers of abstractions to tame reasoning
about memory footprints. As another example, HACL⋆’s “streaming” APIs
required simultaneously reasoning about modifying heap state, while allocating
temporaries on the stack and juggling multiple pieces of data (key state, block
algorithm state, user data, output array, etc.). This piece of code was written in
a very manual style, performing memory reasoning by explicitly calling lemmas,
disabling non-linear arithmetic, hiding specific definitions and lemmas from the
solver, and splitting large stateful functions into smaller pieces that required
writing and maintaining complex descriptions of intermediary states. Problems
with scaling automated memory reasoning in Low⋆ has also been observed by
other authors [119].

Further, Low⋆ has no support for concurrency. Our plan for reasoning about
the concurrent uses of the top-level TLS interface of miTLS-fstar involved del-

14



egating the management of disjoint connections to unverified client code.
Recognizing these limitations, in 2018 we began to investigate the use of

concurrent separation logic (CSL) [143, 165] to structure proofs of memory
footprints. By then, Iris [105] had emerged as a powerful, unifying foundation
for a modern CSL, though focused on interactive proofs in Rocq. We aimed
to adapt some of its ideas for use in a setting with dependent types and SMT
solving.

Our first attempt involved building a separation-logic-based memory model
and verification condition generator using Dijkstra monads, in a style similar
to Low*. Relying on Meta-F⋆ [132], a metaprogramming framework described
more in Section 2.1.7, we also developed tactics to automate a class of proofs in
separation logic. However, our model was too simplistic and did not support all
the usual separation logic connectives, and lacked expressive power. Addition-
ally, although our tactic-based proofs did not suffer from the unpredictability
of SMT-only reasoning, this approach was considerably slower, even for small
programs.

We then developed SteelCore [184], encoding an Iris-inspired concurrent sep-
aration logic in F⋆ by building on our prior work on monotonic state [4]. In
2020, we built Steel [81], libraries that, like Low⋆, shallowly embedded a C-like
language in F⋆, but this time with a concurrency model and tactics to reason
about heap footprints and framing expressed in separation logic. The result is
an SMT-assisted program verification tool where heap reasoning is structured
through a dedicated separation logic tactic rather than by the SMT solver.

Our goal was for Steel to replace Low⋆. However, Low⋆ continued to be
heavily used in other parts of Project Everest while Steel was being developed,
and ultimately, porting all our Low⋆ code to Steel was too labor intensive to
attempt seriously. Besides, by 2021, the Project Everest team had begun to
move on to other topics.

As Project Everest wound down, Steel was used to build other significant
verified systems, including a high-performance concurrent state machine mon-
itor [13] and a security hardened memory allocator [161]. Steel itself evolved
with a new, more foundational and more expressive logical model into Pulse [69],
which is actively developed today.

Low⋆ remains the implementation language of HACL⋆. The experience is
one illustration of the challenge of co-evolving a language and its applications—
changing tires on a moving car is not easy!

2.1.5 KaRaMeL

Accompanying Low⋆, and later Steel and Pulse, is KaRaMeL,12 a compiler that
translates programs produced by F⋆’s extraction pipeline to OCaml (itself mod-
eled after Rocq’s extraction to OCaml [126]) to C code. KaRaMeL is designed
to produce readable C code, aiming to enable adopters of our code to consume
it simply as source code and potentially even maintain it (without proofs) in our

12KaRaMeL was initially named KReMLin, for “K&R meets ML”, but was renamed in
2022.

15



absence. KaRaMeL, and the reassurance it provided to consumers of our code
of being able to read and maintain the generated C code in an emergency, was
a significant enabler of Project Everest’s successful code deployments—more on
this in Section 3.

The input language of KaRaMeL KaRaMeL does not translate all F⋆

programs to C. Instead, it handles a closure-free language, with operations to
explicitly manage memory, including a distinction between stack and heap. In
the 2017 paper that introduces Low⋆ [154], we formalized a the input language
to KaRaMeL as a minimalist first-order fragment of C, and proved on paper the
correctness of a translation from this language to another, lower-level language
modeled after an internal language of the CompCert [125] C compiler. This
provided us with some confidence that the design of our approach was on a sound
basis, though the implementation of the KaRaMeL compiler was in unverified
OCaml.

Additionally, with time, KaRaMeL grew to handle many more features than
our first formal model, though a guiding principle for KaRaMeL was (and re-
mains) that features should be supported only insofar as they admit a pre-
dictable translation to C with no overhead. Notable features include support for
data types and pattern-matching; whole-program monomorphization to compile
prenex polymorphism down to C; a small configuration language for “bundles”,
enabling recombining F⋆ modules into C translation units, eliminating unused
declarations, and establishing public APIs; various analyses to eliminate unused
function arguments, unused local variables, unused type arguments, and unused
type fields; some “peephole” optimizations, e.g., to rewrite the ML-style whole-
record-update r := {!r with f=v}, into a C field-update r->f = v; and a
litany of small cosmetic optimizations to recover good code quality after F⋆’s
monadic encoding, all developed in response to specific requests by KaRaMeL’s
code consumers.

Architecture of KaRaMeL KaRaMeL was designed around a “nanopass”13

architecture. Each cosmetic optimization, no matter how small, is conceptually
expressed as a single nanopass, relying on auto-generated visitors [151] to reduce
implementation burden and to facilitate audit, as KaRaMeL is part of our TCB.

For instance, the compilation of data types is expressed as a sequence of
schemes. First, data types with one constructor that takes a single argument
are eliminated entirely. Next, data types with n constructors each with zero
arguments are compiled to C enums. Next, data types with a single constructor
are compiled to a C struct. Next, data types with n constructors, only one of
which has arguments, are compiled to a C struct with a tag, directly followed by
the non-constant constructor’s arguments (which may be possibly uninitialized).
Finally, remaining data types are compiled to a tagged union scheme in C.

Such complexity is necessary for code quality, but also simply for getting C
code to compile. Without the described optimizations for representing datatypes,

13https://jonathan.protzenko.fr/2022/05/22/meta-programming-cryptography.html

16

https://jonathan.protzenko.fr/2022/05/22/meta-programming-cryptography.html


the Microsoft Visual C compiler (MSVC) refused to compile our code for miTLS
because it exceeded a hard-coded limit for the nesting depth of C structs.
Thankfully, the nanopass architecture, combined with a widespread use of au-
tomatically generated visitors, makes this complexity tractable. We currently
have more than 80 nanopasses in KaRaMeL.

KaRaMeL continues to evolve and now supports extraction to Rust from
Low⋆ and other F⋆ DSLs.

2.1.6 Vale: Verified Assembly Language for Everest

While Low⋆ was our primary language for proofs of C code, we knew from our
experience with Ironclad [95] that to achieve performance competitive with ex-
isting commercial cryptographic libraries, we would need a way to write and
verify assembly code. Cryptographic libraries, like OpenSSL, use aggressive
tricks to optimize their assembly code [37], not just to use platform-specific
hardware instructions (like AESNI [89] or NEON [14]), but also to carefully
manage data movement between registers and memory, to unroll loops, and to
interleave memory fetches with computation so as to keep the CPU pipeline sat-
urated. To produce code like this, OpenSSL uses a mix of Perl, C preprocessor
macros, and hand-written assembly. We wanted a tool that could replicate this
flexibility while providing formal guarantees about the code, ideally without
adding the tool itself to the TCB. Since we anticipated targeting multiple hard-
ware platforms, we also wanted to keep the tool agnostic about the hardware.

Architecture-specific Deep Embeddings in Dafny and F⋆ Vale (Veri-
fied Assembly Language for Everest) is a language with associated tools [37].
The language looks like an assembly language augmented with standard verifica-
tion features, including methods with pre-/post-conditions and modifies clauses,
and the ability to define ghost state, assert properties, and call lemmas. One
design choice that worked well for our use case was the decision to only support
structured control flow. This kept both the code and the reasoning about the
code cleaner and simpler, and in practice, it did not prove unduly restrictive
when writing cryptographic routines, since existing cryptographic code bases
also tend to follow this practice.

To support reasoning about Vale code, we developed a (trusted) deep em-
bedding of each target hardware platform in a verification language (as we
discuss below, initially we used Dafny, but later we shifted to F⋆). The seman-
tics define the state of the hardware (e.g., the registers, various CPU flags, and
byte-addressable memory) and a relation specifying how the state could evolve
based on executing code written with the subset of instructions we anticipated
using in our cryptographic code. To make verification more efficient, we also
defined a series of Hoare-logic wrappers around each instruction, in order to
hide the full complexity of the semantics.

Given an assembly program written in Vale, the Vale tool compiles it into
code in the target verification language. Specifically, Vale (a) creates executable

17



code in the verification language that constructs an AST representing the as-
sembly code, and (b) provides a series of lemmas that walk the verification
language’s automation through the effects of executing the AST. Finally, a sim-
ple trusted printer written in the verification language emits the AST as a series
of vanilla assembly instructions. The core of Vale is agnostic about which verifi-
cation language it targets, but it includes a prover-specific backend for emitting
properly formatted code.

Initially, Vale did not perform type-checking at the Vale-source level; in-
stead it simply relied on the underlying verification language to catch and re-
port typing errors. Eventually, however, we added a proper type checker to Vale
itself. This improves error reporting, but more importantly, it enables Vale to
emit more efficient code for verification purposes. In particular, Vale includes
a custom range analysis for integer values bounded by constants, which occur
ubiquitously when reasoning about assembly code. Leveraging this domain-
specific property enables Vale to perform better analysis than the generic anal-
ysis performed by either Dafny or F⋆, and hence produce more efficient code for
reasoning about the assembly.

In general, the Vale design worked well for us. Vale’s flexibility enabled us
to produce assembly code for many different ISAs, from various flavors of ARM,
x86, and x64 for Everest purposes, to more exotic hardware (e.g., a custom 256-
bit big number accelerator and a tiny 16-bit TI MSP430) in later projects [208].
We gained this flexibility without adding Vale to our TCB; any mistakes in the
tool result in verification failures, not unsoundness.

Vale also includes enough flexibility to produce state-of-the-art performance
(see Section 2.2 for performance results). For example, the Vale language sup-
ports inline procedures, conditionals, and loops, which are compiled to exe-
cutable code-producing functions in the target verification language. Hence, a
Vale developer can write and verify an inline loop at the Vale source level that
is dynamically unrolled during code production. Vale procedures can also take
generic operand arguments, which allows the developer to match, for example,
the tricks that OpenSSL uses to minimize data movement between registers
when computing the SHA-256 hash function. In short, Vale allows developers
to conveniently write and verify the many different ingenious tricks they devise
to eke out more performance.

Our deep embedding approach proved useful in multiple dimensions. For
instance, it made it trivial to produce AST printers for different assemblers,
including the GNU assembler, the MASM assembler, and gcc inline assembly.
It also allowed us to develop verified information flow analyses to rule out classes
of side-channel attacks, which we describe next.

A Certified Taint Analysis for Tracking Side-channels We invested
considerable effort in proving the absence of side channels in our cryptographic
code, a crucial property often neglected in other cryptographic verification ef-
forts [12, 21, 53, 72, 150, 188, 190, 204]. A side channel leaks secret informa-
tion implicitly, e.g., based on the time it takes the code to execute or which

18



memory addresses are (or are not) in the cache after the code executes. Side
channel attacks have been used to devastating effect on deployed cryptographic
code [3, 11, 23, 41, 74, 112, 148, 203]. Rather than directly prove side-channel
freedom for each piece of assembly code, we augmented our ISA semantics with
an adversarial trace of operations representing information (like branches taken
or memory addresses accessed) that might leak via side channels. We then wrote
a conservative, executable taint tracker in the target verification language, and
proved (as a one-time effort) the tracker sound against our augmented ISA se-
mantics; in other words, if the taint tracker approved a given AST, then the
execution of that AST would achieve non-interference with respect to crypto-
graphic secrets.

Taint tracking in the presence of pointers is very difficult, in both theory and
practice. In our domain, however, because the developer is already proving the
functional correctness of her code, we can make the problem quite tractable. In
particular, we ask the developer to augment her load and store operations to
indicate whether they are accessing secret or public data. The functional veri-
fication ensures these labels are accurate, allowing the taint tracker to assume
they are correct, giving it perfectly precise taint tracking into and out of mem-
ory. This approach was effective in certifying all of our Vale code as free of basic
digital side channels, and in the process, it uncovered a place where OpenSSL’s
code (which we had ported to Vale) left secret-tainted data in memory after it
terminated [37].

Heaplets We also encountered various limitations with Vale’s design. For
example, in our initial work with Vale, reasoning about memory usage proved
to be quite painful. The semantics of, e.g., writing from a 64-bit register to
memory dictated breaking up the 64-bit value into eight bytes via a series of
divisions and remainders and then writing to eight consecutive locations in
the byte-addressable machine memory (and similarly for reading a 64-bit value
from memory). Composing multiple such operations produced a huge amount
of mathematical reasoning as well as reasoning about the disjointness of the
affected memory regions. We ultimately addressed this via a somewhat ad hoc
“heaplet” abstraction over the raw memory. This abstraction divided the mem-
ory into disjoint heaps, each of which could view memory as a sequence of a
different type (e.g., bytes, 64-bit words, or 256-bit words). A global invari-
ant kept the heaplets in sync with the physical memory, and one-time proofs
established the soundness of performing, say, 64-bit reads and writes on a cor-
responding 64-bit heaplet. Often we used a heaplet for each logical array that
the code operated on to simplify reasoning about disjointness.

Multiple ISAs While our deep embedding of machine semantics brought sev-
eral advantages, it also added a significant amount of boilerplate to the process
of defining a new ISA, or extending an existing ISA. Creating a new ISA en-
tailed not just defining the semantics, but also creating (fairly boring) Hoare
rules for each instruction, and then also defining and proving various abstrac-

19



tions about the ISA (e.g., the heaplets described above, or abstractions for the
stack). This led to waning enthusiasm for expanding to new platforms. In post-
Everest work, we developed techniques to mitigate some of this tedium [208],
but room remains for additional automation.

Optimizing Verfication Conditions with Proof-by-Reflection in F⋆ Per-
haps the largest difficulty we encountered was that Vale’s approach of embedding
assembly reasoning into an existing verification language gave up control over
how the verification of the code proceeded, resulting in excessively large, com-
plex verification conditions (VCs), which Z3 (the underlying SMT solver used
by both Dafny and F⋆) struggled to discharge. For example, suppose that given
an assembly procedure that copies a small value in register rax into rbx, and
then adds rax to rbx two times, we want to prove that the final value of rbx is
three times the value in rax. Written as a program in either of the verification
languages (e.g., using two variables to represent the registers), this produces a
simple, easily discharged VC. However, when embedded via Vale, the VC be-
comes far more complex. Instead of encoding rax and rbx as distinct variables,
they are instead indices into the machine’s register file, so they come with side
conditions that each index is in bounds and that a register is a valid operand for
each place it’s used in the assembly instructions. Reads and writes to the reg-
isters become map select/update operations, and the solver must reason about
whether or not rax and rbx are disjoint. In long code blocks, the solver must
repeatedly apply various select/update axioms to discover the current values of
various pieces of state, and worse, most of this reasoning is discarded when the
solver decides to backtrack. As a result, verification time explodes, making it
tedious and inefficient to write and debug proofs about the code.

This poor verification performance, along with a desire for a unified verifica-
tion language and security theorem (Section 2.1.1), led us to switch from using
Dafny as a Vale backend to using F⋆. In F⋆, we developed a custom VC gener-
ator for Vale as a normal F⋆ function that F⋆ applies to our assembly code [79],
in a style similar to proof-by-reflection. The VC-generator is executed using
F⋆’s advanced normalization features to automatically simplify the VC into a
form that captures the essence of the assembly code’s mathematical reasoning
and eliminates the overhead that previously arose from the deep embedding. F⋆

then sends the simplified VC to the SMT solver as normal. This approach re-
sulted in significant performance improvements, particularly for larger assembly
procedures where developers tend to spend most of their time. This work also
inspired later work that makes it simpler and more efficient to embed DSLs in
F⋆ [98, 183].

Verified interoperability between C and Assembly With Low⋆ and Vale
both using F⋆, we were able to formalize an interoperability layer, proving that
C programs verified in Low⋆ safely interoperate with assembly routines imple-
mented in Vale. While our initial version used an ad hoc external tool [79],
we eventually swapped to an approach done entirely inside F⋆ [153]. This new

20



approach involved a one-time effort to verify a generic and modular definition
of interoperability (including calling conventions) that could then be easily ex-
tended to new platforms and new features. It also relied critically on F⋆’s sup-
port for dependently typed arity-generic programming [8]. We often employed
these interoperability tools in our cryptographic libraries (Section 2.2) in order
to replace fragments of C code with hand-optimized assembly, while providing
a single correctness theorem.

Beyond Everest While we designed Vale with cryptographic code in mind,
subsequent work, by us and others has used it in a variety of settings, in-
cluding a software monitor for on-demand, user-mode, concurrent isolated ex-
ecution [75], secure boot code burned into the mask ROM on the OpenTitan
security chip [208], an I/O separation kernel [205], and a verified WebAssembly
sandboxing compiler [40].

2.1.7 Metaprogramming

A key aspect of our proof methodology was the use of metaprogramming to
generate and verify code. We use the term to encompass two different styles.

Higher-order programming with compile-time reduction As in other
dependently typed languages, the F⋆ compiler includes an abstract machine for
reducing program fragments. This machine is capable of inlining, as is usual in
many compilers, but during inlining it can also reduce lambda terms (including
terms with free variables), simplifying branches and unrolling recursion. Using
this facility, we programmed in a generic higher-order style and relied on the
compiler to specialize the code to a closure-free form, enabling it to be com-
piled to efficient C code by KaRaMeL. This effectively allowed us to compile a
much greater class of F⋆ programs to C, i.e., those that fit in KaRaMeL’s input
language after compile-time reduction. Three brief examples follow.

A first example is from EverParse [157], a verified parser generator. Rather
than program a parser for each format by hand, we designed a higher-order
library of parser combinators, proven correct compositionally. Then to parse
a given format, we developed tools to generate the appropriate application of
combinators, with F⋆ compile-time specializing the result into first-order code.
We also made heavy use of partial evaluation, especially for 3D [183], to turn
an interpreter for a DSL of parsers into a compiler, a technique known as a
Futamura projection [82].

Another example is from HACL⋆: For cryptographic libraries, one wishes
to provide specialized algorithms for cryptographic constructions that are pa-
rameterized by various algorithms. For example, an authenticated encryption
construction could be instantiated with several different ciphers and message-
authentication codes. Rather than program all the combinations separately, and
do proofs for each of them, we programmed a single generic construction parame-
terized by the choice of primitives, proved it correct once, and then compile-time
specialized it several times to obtained optimized implementations for each of

21



the many choices of primitives. Verifying generic combinators can sometimes
be easier than verifying even a single specialized version, as the abstraction
imposed by genericity can force a separation of concerns; e.g., the proof relies
only on some generic algebraic property, rather than specific properties of the
arithmetic operators.

In an extreme example of genericity, the Noise* project [98] developed a
generic library of combinators for a family of key exchange protocols, doing
proofs once that covered all 59 protocol variants in the family, in about 40,000
lines of generic, higher-order Low⋆ and F⋆ code. These variants could be special-
ized further to several hundred implementations, yielding more than 3 million
lines of C code, if one were to generate them all.

Syntax reflection In 2017, inspired by work on Lean [59] which was being
developed simultaneously at Microsoft Research, we developed a general purpose
syntax reflection for F⋆ called Meta-F⋆ [132]. This is the basis of F⋆’s tactic
engine, its typeclass system, and a general facility for metaprogramming by
syntax reflection, allowing F⋆ meta-programs to inspect and generate F⋆ code.
A unique aspect of F⋆’s metaprogramming system was that it was designed to
be used in conjunction with verification condition generation and SMT solving.

While at the start of the project, we relied mostly on SMT solving for proofs,
as Meta-F⋆ became available, we selectively moved to tactic-based proofs to au-
tomate certain classes of proof obligations, relieving the SMT solver of some
of the burden of proving complex properties. For instance, many proofs in-
volved reasoning about non-linear arithmetic, which is poorly automated by
SMT solvers. However, many proofs are streamlined simply by rewriting terms
into a normal form by associativity and commutativity—we relied on tactics
for such proof steps. Similarly, we developed tactics to convert reasoning about
operations on bounded machine integers into properties of bit vectors, and then
used Z3’s bit vector solver.

Meta-F⋆ was also a key enabler for our forays into separation logic. As
explained in Section 2.1.4, Steel aimed to avoid using the SMT solver for heap
reasoning. Instead, we developed tactics in Meta-F⋆ for solving a small class of
separation logic entailments, including finding frames for the application of the
frame rule, introducing and eliminating existential predicates.

We also combined compile-time specialization with syntax reflection in HACL⋆,
to implement more advanced forms of modular, compile-time specialization (re-
sembling C++ template metaprogramming) [96].

2.1.8 Engineering

In addition to research advances around program logics and proof methodology,
we invested significant effort in engineering aspects of the language and its
ecosystem. We highlight a few significant elements here.

Interactive Development Environments (IDEs) Quick incremental feed-
back is extremely important when verifying a large program, and batch mode

22



verification was too slow. We needed an IDE backed by a language server that
enabled incremental verification. We started with the Atom editor, but by 2017,
we had started to use fstar-mode.el, an Emacs-based interactive environment
similar to IDEs for Rocq and other languages. This was the main IDE for F⋆

and remains useful. A plugin for VS Code, fstar-vscode-assistant was developed
later and is used by many F⋆ developers today.

Build system We primarily used GNU Make—despite its many quirks, it
was familiar to everyone. To verify Vale code (and to build Vale itself), we also
used SCons, a Python-based build tool. To enable separate compilation, with
incremental and parallel builds, we made many enhancements to F⋆.

Continuous integration (CI) Perhaps the most important element in our
engineering infrastructure was the CI system, enabling distributed collaboration
at scale. We spent a huge effort on this, with at least one dedicated person main-
taining the system for several years, through several iterations, with the system
being overhauled completely at least 3 times. CI remains crucially important
and continues to evolve, though the available tooling for this has also improved
and become somewhat more standard, e.g., through the use of GitHub actions.
A complete build of all the Project Everest code takes about 2.5 hours on our
CI system today.

Project Everest was structured as a collection of several GitHub reposito-
ries, one for each sub-project. For instance, we had separate repositories for
F⋆, KaRaMeL, Vale, HACL⋆, EverParse, miTLS-fstar, etc. This reflected the
relatively loose federation of the team spread across several organizations, in
contrast to the monorepo style [152] that uses a single repository for multiple
projects. This was in part because some of our repositories were pre-existing
(e.g., for F⋆ and Dafny, and these had uses independently of Project Everest),
and in part because we wanted to minimize contention when pushing changes,
making it easier for the various projects to experiment more freely.

Nevertheless, we also wanted to ensure that sub-projects remained work-
ing together as they evolved. Towards this end, we had a repository for syn-
chronization among the projects which maintained a set of commit hashes for
each sub-project recording the last known combination at which all the projects
worked together. To enable this style of development, we had a hierarchical
CI system, with separate builds for each project, and then an Everest-wide CI
system to build all of the main branches of the sub-projects together four times
a day, using the latest versions available, and advancing the commit-hash-set
on success. Build notifications were sent to a Slack channel.

This hierarchical approach had several benefits. It allowed each project to
evolve separately, especially enabling development work to proceed in branches
without need for global synchronization. Build times were also faster for indi-
vidual projects, especially important in a setting with verification, since com-
pilation time includes proof-checking and can be quite long. Additionally, the
main branches of all the projects were synchronized every six hours, provid-

23

https://github.com/FStarLang/fstar-mode.el
https://github.com/FStarLang/fstar-vscode-assistant


ing the usual benefits of continuous integration: reacting quickly to broken
builds; easily identifying breaking changes; with notifications to raise awareness
of breaking changes.

We continue to maintain this hierarchical CI system today, though several
other CI systems have also come up. For instance, F⋆ has a “check-world”
build, which orchestrates around 21 build and test actions from a collection of
“friend” projects as a workflow of GitHub actions. Separately, INRIA maintains
a Nix-based CI system for HACL⋆ and related projects.

Setting up a consistent development environment Owing to the hy-
brid Windows/Linux development environment and our tools’ dependency on
the OCaml ecosystem, new contributors found it hard to get a working devel-
opment environment. We invested in a bash script (that grew to be several
thousand lines long) to setup a fresh development environment while catching
setup mistakes and/or known bugs (e.g., faulty versions of package dependen-
cies). More recently, Nix has emerged as a more systematic way to address
reproducible builds and dependencies.

2.2 Cryptographic Primitives & Constructions

Cryptographic primitives (e.g., for encryption or signatures) make attractive
verification targets, since (a) they typically have a relatively succinct, mathe-
matical definition of correctness; (b) they often lie on the critical path for ap-
plication performance, motivating extensive and complex optimizations; (c) the
amount of code needed for a given primitive is non-trivial but still within the
reach of modern verification tools, and (d) tiny flaws in the implementation can
deeply break the application’s security. As a result, many lines of work [16] have
tackled this problem. However, much of the work in this area has focused on
portions of a cryptographic primitive (e.g., the field operations used within the
routines for digital signatures), or ignored either performance or side channels
(or both).

In contrast, Project Everest focused heavily on performance, since we ex-
pected few industrial users would be willing to use slower cryptography, even
if it came with stronger guarantees. We also focused on providing a compre-
hensive suite of fully verified primitives, so that applications (including TLS)
would have everything they needed in a unified cryptographic provider. Finally,
because side channel attacks have historically plagued real-world cryptographic
deployments we took steps to ensure basic side-channel freedom in all of our
verified cryptography.

In this section, we discuss our experience developing the HACL⋆ and Vale-
Crypt libraries of verified cryptographic primitives, and EverCrypt, a crypto-
graphic provider.

24



2.2.1 Cross-Platform C Code With HACL⋆

Being implemented in Low⋆, HACL⋆ extracts to C code that can be compiled
with widely used compilers such as GCC or clang. With the exception of SIMD
optimizations, described later in this section, HACL⋆ implementations are in-
tended to be portable, and therefore easily deployable on different platforms.
At the time of writing, HACL⋆ provides the following functionalities: authen-
ticated encryption with additional data (Chacha20-Poly1305), Elliptic-curve
Diffie-Hellman key exchanges (for both Curve25519 and Ed25519), signatures
(Ed25519, ECDSA P-256, and RSA-PSS), hashes (the SHA2, SHA3, and Blake2
family of hashes, as well as the obsolete SHA1 and MD5), hash-based key deriva-
tion (HKDF, using either SHA2 or Blake2 as a basis), symmetric encryption
(Chacha20), and message authentication codes (Poly1305, and the hash-based
HMAC using any of the hashes provided by HACL⋆). The entire library con-
sists of 212,000 lines of F⋆ code (specification and proofs included), ultimately
generating 101,000 lines of C code. In the rest of this section, we discuss several
design choices and verification techniques used pervasively throughout HACL⋆.

Generic Integer and Array Libraries Cryptographic implementations typ-
ically rely on the same set of core program constructs, namely, machine integers
and arrays. To reduce code duplication and proof effort, we leveraged F⋆’s de-
pendent type system to implement generic integer and array libraries, which
provide both the core functionalities and many helpful lemmas and properties
needed to implement a range of cryptographic primitives. Our dependently
typed overloading is an alternative to typeclass-based overloading [194], allow-
ing us to encode various subtleties, such as the partiality of operations to ensure
the absence of overflow, and a distinction between public and secret data, as
described next

While Low⋆ provides builtin types and operators for machine integers (from
8 to 128 bits), directly using them can be tedious: for instance, performing an
integer addition requires calling the addition function for a given integer type
(e.g., uint8 or uint32), instead of using the standard + operator. To simplify the
use of machine integers, we defined an abstract integer type on top of Low⋆’s
machine integers, parameterized by a tag enumerating all known variants of in-
teger types. We then redefined operators such as addition or multiplication to
use the abstract integer type, and to be parametric in the integer width. Impor-
tantly, the tag is marked as an implicit argument: when writing cryptographic
code, programmers do not need to explicitly specify it at each operation; F⋆ is
in almost all cases able to infer it from the context.

In addition to abstracting over the integer width, the abstract integer type
used in HACL⋆ is also parameterized by a secrecy level, distinguishing between
public and secret data. This parameter allows to restrict operations that can be
performed on secret integers: any non-constant time operation (e.g., division),
comparison (needed for branching), or array access can only be performed us-
ing public integers. As the integer type is abstract, users can only manipulate
integers through operations exposed by the library, thus ensuring that crypto-

25



graphic implementations satisfy the constant-time programming discipline, and
are robust against basic digital side-channel attacks.

The array library offers an abstract, polymorphic type for Low⋆ arrays, as
well as several generic, higher-order combinators for common operations, in-
cluding iterating over the elements of an array, or applying a fold operator for
a user-provided function. This library also provides common lemmas and prop-
erties for these operators, for instance, that applying a fold operator with two
equivalent functions yields the same result.

Importantly, both the generic integer and array libraries leverage F⋆’s metapro-
gramming facilities to offer zero-cost abstractions. Abstractions and combina-
tors are inlined at compile-time to retrieve Low⋆ machine integers and C-like
loops iterating over arrays respectively, without inducing any run-time cost. In
particular, this prevents the need for function pointers when relying on higher-
order combinators: functions passed as arguments are inlined in the body of the
combinator.

SIMD Implementations Many modern processors provide Single Instruc-
tion Multiple Data (SIMD) instructions, which allow performance optimizations
based on vectorization, computing over 4, 8, or 16 integers in parallel. Crypto-
graphic code is particularly amenable to SIMD-based optimizations, with several
algorithms (including the Chacha20 stream cipher and the Blake2 hashes) de-
liberately designed to enable them. While platform-specific, SIMD instructions
are typically available at the C level through the use of compiler intrinsics. Op-
timizing for a variety of platforms can however be tedious, requiring duplicating
similar code, with minor differences to account for different platforms and levels
of vectorization.

One key observation is that, despite small differences, cryptographic code
relying on different levels of SIMD vectorization exhibits the same high-level
code patterns, which only depend on the number of computations performed in
parallel by SIMD instructions. Relying on F⋆’s support for dependent types, we
developed cryptographic implementations generic in a vectorization level [149].
Similarly to our methodology for generic integers, we defined an abstract type
for integer vectors, parameterized by the vector width. We then defined width-
parametric operations for this datatype, such as vectorized arithmetic and bit-
wise operations, which abstract over the specifics of instructions on a given
platform (e.g., ARM Neon vs Intel AVX). Cryptographic implementations us-
ing this library could then be specialized using compile-time reduction, selecting
the appropriate compiler intrinsics for a given platform and vectorization level.

This separation between a generic, verified implementation and its exe-
cutable specializations had several benefits. First, it greatly reduced code du-
plication, as well as the time and effort needed to develop different vectorized
implementations. Second, it also helped with the proofs, by abstracting over
platform-specific details which are irrelevant to establish the correctness of im-
plementations and also helping SMT-based proof search by removing irrelevant
facts from the search space (Section 4.3). Third, relying on one generic im-

26



plementation simplified maintenance, as well as extensions to novel platforms.
When unstable proofs broke, only the generic implementation needed to be
fixed. Further, adding support for, say, ARM Neon when Intel AVX was already
supported, only required instantiating the abstract vector operations with the
corresponding compiler intrinsics.

Of course, it was crucial to ensure that genericity and ease of verification was
not done at the cost of performance. To reach this goal, F⋆’s support for depen-
dent types and metaprogramming, allowing the use of zero-cost abstractions,
was particularly significant.

Development of HACL⋆ continues today, to support new algorithms, new
features as demanded by deployments, and for regular maintenance. One signif-
icant recent advance was the use of metaprogramming to support Hybrid Public
Key Encryption, which we describe next.

HPKE Hybrid Public Key Encryption (HPKE) [18] is a recently standard-
ized cryptographic construction used in several cryptographic protocols, includ-
ing MLS [17] and TLS’ Encrypted Client Hello [164]. The construction com-
bines several cryptographic components: (a) a key encapsulation mechanism
(KEM); (b) a key derivation function (KDF); (c) authenticated encryption
with additional (authenticated) data (AEAD). Additionally, the HPKE stan-
dard recommends multiple ciphersuites, allowing four different KEMs (P-256,
P-521, Curve25519, Curve448), two KDFs (HKDF-SHA256, HKDF-SHA512),
and three AEADs (AES-GCM-128, AES-GCM-256, Chacha20Poly1305), lead-
ing to 24 possible ciphersuites, and many more implementations to support
platform-specific optimizations, such as the SIMD vectorization previously de-
scribed. We also implemented generic streaming APIs to transform block-based
algorithms into a safe, high-level API, encapsulating a state machine over inter-
nal state—we describe this more in Section 4.3.

Given its structure, HPKE is particularly well-suited to HACL⋆’s generic
verification methodology. Similarly to the SIMD implementations, we develop a
generic, verified HPKE implementation, which is parameterized by the cipher-
suite used, and thus by, e.g., abstract encryption and decryption functions. The
compile-time specialization is however more complex: while inlining was suffi-
cient for previous applications, it is here important for code quality to preserve
the structure of the call-graph to, e.g., call into an AEAD library after specializa-
tion instead of entirely inlining it. To this end, we rely on F⋆ metaprogramming
facilities to perform call-graph rewriting [96].

The rewritings performed are entirely untrusted: generated F⋆ terms are
rechecked against the user-supplied specification after the transformation. While
this avoids the need for proving that our metaprogrammed call-graph rewriting
preserves the semantics of the source program, it however forces reverification
of the specialized code. Luckily, the SMT-based proof automation was in most
cases sufficient to perform this step automatically when starting from a verified,
generic version. Debugging unstable cases was however tedious, as it required
printing the generated, specialized program, adapting it to match the F⋆ syntax

27



(the pretty-printer did not exactly generate valid F⋆ code), fixing verification
on the specialized program, and finally propagating needed assertions or lemma
calls to the generic version to stabilize the proofs.

2.2.2 Platform-Specific Assembly Code With Vale

Project Everest implemented a variety of cryptographic primitives (or the ker-
nels thereof) in verified assembly using Vale (Section 2.1.6). Our goals were
both to achieve high performance, and to evaluate and evolve Vale itself. As
our techniques, experience, and Vale evolved, we targeted increasingly complex
versions the primitives. We summarize our experience with several representa-
tive examples below.

SHA-256 SHA-256 [138] is a ubiquitous cryptographic hash function. Some-
what unusually for a cryptographic primitive, its specification is quite impera-
tive, relying on repeatedly applying a variety of bit-level manipulations of inter-
mediate variables. Nonetheless, optimized implementations, e.g., in OpenSSL,
can be quite large, due to careful instruction scheduling, loop unrolling, and
other optimizations. Using our original Vale/Dafny implementation, we veri-
fied OpenSSL’s vanilla assembly implementation on ARM to demonstrate that
Vale supports all of the performance tricks that OpenSSL employs, and we ver-
ified our own implementation on x86, to illustrate Vale’s support for multiple
hardware platforms [37]. Our measurements show our ARM implementation
matching that of OpenSSL, confirming that we faithfully implemented and ver-
ified their optimizations.

We later built an implementation (based on OpenSSL’s) for x64 that uses
Intel’s SHA-acceleration instructions [90]; it too achieves performance parity
with OpenSSL [79].

AES AES [141] is a block cipher used in numerous cryptographic construc-
tions to provide data secrecy and/or integrity. It is used so ubiquitously that
Intel added seven dedicated CPU instructions (in the AESNI extension [89]) to
accelerate its performance. Specifying the effect of each instruction is complex,
since it involves describing large swathes of the AES specification, as well as
Intel’s XMM extensions for 128-bit registers.

We initially used Vale/Dafny to implement AES-CBC [140] (an encryption
mode that provides secrecy but not integrity), following Intel’s recommended
guidelines for employing the AESNI instructions. This implementation met,
and in some cases beat, OpenSSL’s AES-CBC comparable implementation, but
it is less used in OpenSSL; AES-CBC is not commonly used on the Internet, and
when it is, OpenSSL typically uses a version that can process four ciphertexts
in parallel, e.g., for multiple TLS connections.

The far more common use of AES is as part of AES-GCM [142], a construc-
tion which provides both secrecy and integrity. It is used, e.g., for over 91% of
secure web traffic [136]. AES-GCM is quite complex, with the correctness of
the GCM portion requiring reasoning about operations over a Galois field. We

28



initially used Vale/F⋆ to implement our own version of AES-GCM [79] in pure
assembly, and in a hybrid of C and assembly. At the time, the pure version out-
performed the hybrid by 1.5×, and a pure C implementation verified in HACL⋆

by 3, 670×. However, it lagged OpenSSL’s pure assembly version (written in
over 1100 lines of Perl and C preprocessor scripts) by 6.5×.

We eventually ported OpenSSL’s version to Vale/F⋆. The code is remarkably
complex, interleaving instructions for encryption, authentication, and memory
prefetching; it processes six 128-bit blocks in parallel to saturate the XMM reg-
isters, while also running the encryption 12 blocks ahead of the authentication
in an effort to keep the CPU pipeline saturated. Verifying this code exactly as
written required significant developer effort. It took non-trivial effort to even
understand the existing code; indeed one co-author spent two days convinced it
was wrong in one corner case, only to discover and prove an invariant covering
that case too. Our resulting verified code meets or beats the performance of
OpenSSL’s implementation.

Curve25519 Curve25519 [22] is an elliptic curve used for key agreement by
many modern standards for secure Internet traffic, including SSH, TLS-1.3,
WireGuard [65], and Signal.14 Using Curve25519 requires performing opera-
tions over field elements represented using 4–5 64-bit machine words. These
field operations are typically bottlenecked by carry-bit propagation, even given
Intel’s normal support for an add-with-carry instruction, so Intel added support
for a second carry chain via the Intel ADX instruction set [102]. In 2017, Oliveira
et al. [145] created an implementation using this new support and showed that it
resulted in a significant performance boost. Software vendors, including Mozilla
and WireGuard, were interested in using the new optimizations, but they be-
came disenchanted when several bugs [66] were discovered through differential
testing.

Starting from Oliveira et al.’s implementation, we implemented and verified
an ADX-based design in Vale, with higher-level operations over those field ele-
ments written and verified in HACL⋆ [153]. The implementation was sufficiently
modular that the Vale code could be swapped for a verified C-level implemen-
tation of the field operations for use on non-ADX CPUs. At the time of pub-
lication, both implementations set records [153]. Our pure C implementation
beat state-of-the-art unverified C implementations [1], verified C implementa-
tion from FiatCrypto [72], and even a popular assembly implementation [53].
Meanwhile, our hybrid, ADX-based implementation beat all known verified or
unverified implementations, including Oliveira et al.’s version.

This strong performance coupled with strong guarantees contributed to later
industrial deployments (Section 3.2).

Observations Looking back, our drive for strong performance pushed our
tools to evolve to the point where they could handle the complexities found in
optimized code produced by practicing cryptographic engineers. It forced us to

14https://signal.org

29

https://signal.org


grapple with complicated hardware instructions, since an implementation using
these instructions can be 8–10× faster than a vanilla C implementation, and
3-4× faster than hand-written vanilla assembly [37]. Using C-level intrinsics
can perform better [149], but it requires trusting the compiler, typically with
maximally aggressive optimizations enabled.

Verifying so much industrial assembly made us appreciate the remarkable
ingenuity of engineers implementing low-level, optimized cryptographic code.
This reinforces our view that we should design verification tools that support
such developers as they exercise their ingenuity, rather than try to automatically
create our own optimizations for them. We are also amazed that experts can
design and implement such intricate implementations that nearly always work
correctly, even without the benefit of mechanized assistance. We hope that the
verification tools we and others develop will simplify their jobs and perhaps even
support further feats of ingenuity by providing a verification “safety net”.

Finally, in our efforts to match the performance of state-of-the-art indus-
trial cryptographic libraries, like OpenSSL, we focused on verifying exactly that
code in Vale. This proved effective in achieving good performance, but in some
cases, such as AES-GCM, it created an onerous amount of work, since the code
was quite complex, without clean abstractions or separations of concern that
would have simplified verification. Hence, we designed a framework [39] for
automatically transforming a clean version of the assembly code (e.g., where
the encryption instructions are grouped together, followed by the authentica-
tion instructions) into the “ugly” but performant version. By verifying that the
generic transformation steps preserve the original semantics, we could write and
verify the clean code (using 3× fewer lines of proof) but transfer the guaran-
tees to the ugly code. To quantify the performance benefits offered by the ugly
code, we evaluated both versions on a variety of different CPUs. To our sur-
prise, on some CPUs (primarily from older generations), the clean version ran
faster! We then experimented with a genetic algorithm that attempted to de-
sign the fastest version of the code for each specific processor generation, using
the verified transformers to confirm that the generated algorithm still provably
implemented AES-GCM. This process produced code that could beat OpenSSL
on each individual processor by up to 27% [39]. This level of fine-grained CPU-
specific specialization would be infeasible in an ordinary development world,
where the burden of maintaining so many versions would be tremendous, but
with verification-backed automated optimization, such an approach seems quite
plausible.

2.2.3 EverCrypt: A Cryptographic Provider

From a developer’s perspective, cryptographic providers like libsodium [2] offer
not simply an ad hoc collection of cryptographic primitives, but rather a com-
prehensive set of cryptographic utilities united under a clean, unified API. Prior
to our work on EverCrypt, no verified equivalent existed.

With EverCrypt [153], we aimed to provide a comprehensive suite of ver-
ified cryptographic primitives and constructions, along with modern features

30



such a cryptographic agility and automated multiplexing. An API with crypto-
graphic agility makes it easy for developers to swap between two cryptographic
algorithms that provide the same cryptographic functionality (e.g., between the
Blake2 and SHA-256 hash algorithms). This is crucial to enable applications
to quickly switch away from a cryptographic algorithm that is broken via new
cryptanalysis techniques or advances in, say, quantum computation. Histori-
cally, a lack of cryptographic agility has created dangerously long windows of
vulnerability; e.g, after attacks on SHA1 became feasible, it still took the world
over five years to migrate to more secure alternatives.

Concretely, EverCrypt’s agile API for, say, hashing, accepts an algorithm
specifier during initialization, but it returns an abstract state object to the
caller. All other API calls operate on that state and take identical arguments,
regardless of algorithm choice. Hence, a one-line change to the initialization call
enables a new algorithm choice. In practice, we also found that an agile API
facilitated cleaner verification. The API’s formal guarantees necessarily omit
any algorithm-specific details, which means that verified consumers of those
APIs have fewer irrelevant facts polluting their proof context.

EverCrypt also performs verified multiplexing, meaning that it automati-
cally probes the CPU’s capabilities at library initialization-time, and from then
on, selects the fastest algorithm supported on that platform. For example, if the
platform includes Intel’s AESNI instructions, EverCrypt selects an optimized
Vale assembly implementation of AES-GCM; otherwise it falls back to a generic
C implementation from HACL⋆. Because both implementations provably imple-
ment identical functionality, these selections can occur automatically, without
input from the developer. Doing this crucially relied on all our proofs being
in the same framework, so that both ValeCrypt and HACL⋆ implementations
of the same algorithm offered identical logical specifications, and also on our
support for verified interoperability between C and assembly (Section 2.1.6) so
that EverCrypt’s Low⋆ code could call into ValeCrypt’s assembly routines.

As with our other cryptographic efforts, we relied heavily on metaprogram-
ming to author and verify our code once, and then to produce multiple instances
of it. For instance, outer parts of our Curve25519 algorithm were generically
proven against any implementation of the core field primitives; then, specialized
instances were generated “for free” for both the ASM (ADX) and C versions,
and those were eventually packaged underneath an abstract layer of multiplexing
in EverCrypt. The same goes for other algorithms such as SHA-256.

In the process of creating EverCrypt, we also developed approximately six
new optimized assembly implementations in Vale, and 11 new C implementa-
tions in HACL⋆, many of which are described above. At the time, many met or
beat the performance of state-of-the art implementations, whether verified or
unverified.

We also used EverCrypt in several applications, to illustrate both the usabil-
ity of the APIs and that EverCrypt’s performance gains accrue to the applica-
tions too. For example, we developed a highly optimized Merkle tree support-
ing amortized O(1) insertions. We verified it against EverCrypt’s API and also
proved cryptographic security, in the sense that finding a collision in the Merkle

31



tree could be provably translated into finding a collision in the underlying hash
function. We also found that our Merkle tree was 2.8× faster than Bitcoin’s
implementation at the time.

EverCrypt also underpins our work on the TLS-1.3 and QUIC record layers
(Section 2.4).

2.3 Parsers & Serializers

Protocol standards prescribe specific message wire formats to enable interoper-
ability. Serializing and parsing structured messages to and from a wire format
is an essential part of any protocol implementation, and their correctness is
crucial to an end-to-end theorem. For security protocols, it is also important
that the wire formats are non-malleable, i.e., any modification to a wire for-
matted message should be detected by the parser, also known as the “unique
representation” property.

In prior work on miTLS in F7, a considerable part of the proof effort was
spent on manually proving the correctness of ad hoc parsers and serializers.
For Project Everest, we decided to solve this problem systematically by devel-
oping EverParse, a verified parser & serializer library for non-malleable wire
formats, especially those used in TLS. Going beyond miTLS, whose parsers
and serializers were programmed in purely functional F#, EverParse aimed for
high-performance C code with zero copies.

EverParse was designed as a library of higher-order combinators, as de-
scribed in a 2019 paper [157]. Combinator parsing has its roots in functional
programming [101], providing a higher-order, compositional way to structure
parsers. EverParse generalized the combinator parsing approach to produce
verified code in low-level languages, by layering combinators. Our approach
distinguished specification combinators, pure functions that define the data for-
mat specification, and on which proofs of properties such as non-malleability
are conducted; and implementation combinators which follow the structure of
the specification combinators while refining them to efficient, low-level code.

Given a library of specification and implementation combinators, one could
build a provably correct low-level parser by composing combinators, with their
types ensuring that implementations refine specifications, by construction. This
structured approach significantly reduced the cost of doing proofs of specific
parsers and serializers, in favor of once-and-for-all generic proofs of the un-
derlying combinators—another instance of our exploitation of the higher-order,
generic, dependently typed programming style that F⋆ offers. Additionally, re-
lying on metaprogramming and compile-time specialization, all the higher-order
combinators are partially evaluated into low-level code extractable to efficient
C code by F⋆ and KaRaMeL.

QD: A frontend to consume notation from RFCs The wire format of
messages in the RFCs for TLS, QUIC, and others are described in a semi-formal
notation for tag-length-value encoded structures. To directly consume this no-
tation, we developed a frontend to EverParse (playfully named QuackyDucky or

32



QD by Nadim Kobeissi who implemented it) to translate the semi-formal nota-
tion used in the TLS RFC (as well as some others) into EverParse combinators.

Using QD, we automatically proved the non-malleability of the wire for-
mats for TLS-1.2 and TLS-1.3 and generated validators and parsers for them.
EverParse combinators were designed to be efficient zero-copy parsers. That is,
one could read elements of a validated message directly out of the input buffer,
rather than copying them into a separate data structure. Later, EverParse was
used to formalize the wire formats of the QUIC protocol [62], together with
manually written parsers and serializers to handle secret-dependent values in a
constant-time manner, important for side-channel protection.

EverParse also supports serialization, though it was left to a human to assem-
ble serializer combinators by hand, rather than using QD—this was necessary
since we aimed to also support incremental serialization, with full user control
over memory management, rather than copying from a high-level message type
into a wire-formatted byte buffer. These serializer combinators were used in an
interesting variant in DICE⋆ [186], a verified firmware library for IoT devices. To
support in-place serialization of variable-length X.509 certificates, an adaptation
of the serializer combinators was developed to allow writing data into a buffer
from right to left, so that the variable-sized byte length of a variable-length field
could be filled in after it was serialized.

ASN.1 Starting in the summer of 2020 and stretching over the course of two
remote summer internships at MSR by Haobin Ni, we formalized the ASN.1
data description language. This development was also built on top of the core
library of EverParse combinators, with additions to support the various ASN.1
specific features. The work involved distilling the complexity of four ISO stan-
dard documents15 (covering several hundred pages of text) into about 6,700 lines
of documented F⋆ code together with the first formal proof that ASN.1’s Dis-
tinguished Encoding Rules (DER) produce unambiguous, non-malleable binary
formatted messages [139]. We also experimentally validated our formalization
by using it to parse nearly 20,000 ASN.1 formatted X.509 certificates and cer-
tificate revocation lists found in the wild. However, this development yielded
only OCaml code for validators and parsers, rather than low-level C code.

Windows Networking and 3D EverParse’s usefulness was soon recognized
to be broader than just for use within verified F⋆ applications. Parsing attacker-
controlled inputs is a significant source of security vulnerabilities in all kinds of
applications, especially those programmed in memory unsafe languages like C.16

Recognizing this, working in conjunction with the Windows Networking engi-
neering teams, we designed 3D, a C-like frontend to EverParse that can be used
to describe ad hoc, data dependent binary formats [183]. 3D’s “dependent data
descriptions” are translated to applications of EverParse combinators yielding
verified C code for parsing. Like other parser generators, 3D also supports a

15https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
16https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html

33

https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html


notion of “parsing actions”, imperative code that can be executed as fragments
of the input are parsed. 3D also aimed to address the slow verification times
of code produced by QD. Whereas QD directly generated applications of Ever-
Parse combinators producing a large volume of code to be typechecked by F⋆,
3D instead uses an interpreter for a deeply embedded language of data formats
proven correct once and for all, together with a partial evaluation approach—an
instance of compile-time specialization, as described in Section 2.1.7. 3D is used
today in many products at Microsoft—we discuss this further in §3.

Work on secure formatting tools continues in the post-Everest ecosystem.

Comparse Comparse [196] is another secure parsing framework in F⋆, with
a focus on specifications of message formats rather than their efficient imple-
mentation. Whereas EverParse comes with a custom domain-specific frontend
(QuackyDucky, ASN.1, 3D etc.), Comparse’s frontend is F⋆ itself, which allows
using the full expressivity of F⋆ to define formats; in most cases, parsers and
serializers can be automatically derived using a meta-program. Comparse is
parameterized by a bytes interface, meaning one can instantiate it with either
concrete bytes (to obtain a reference implementation) or DY*’s symbolic bytes
(to perform security proofs). This allows obtaining non-confusion proofs for the
entirety of the protocol, or finding attacks, such as a recent signature confusion
attack in the MLS messaging protocol [195].

PulseParse, CBOR, CDDL PulseParse redesigns the implementation-level
combinators of EverParse using Pulse, instead of Low⋆. The use of separa-
tion logic in Pulse enabled defining modular combinator-style interfaces for
both parsers and serialization—in contrast, serialization support in Low⋆-based
EverParse is limited and requires a high-level of manual proof. Additionally,
PulseParse provides support for a class of recursive formats, particularly those
that can be validated in constant stack space. Using this new foundation, Ra-
mananandro et al. [158] formalize a range of new data formatting standards,
including CBOR [38] and a standardized data description language CDDL [34]
on top of it—these standards are particularly relevant in security-critical appli-
cations for embedded systems such as COSE [170], DPE [189], and others.

Vest Cai et al. [48] implement a parser-and-serializer generator in verified
Rust by compiling a custom data description language (inspired by Nail [15])
to a combinator library in Verus. The Vest DSL is expressive and provides
particularly robust support for variant formats (e.g., optional fields or unions
that are explicitly tagged, implicitly tagged, or untagged) and dependent for-
mats, both within formats (e.g., for tag-length-value formats) and external to
formats (needed to support formats that may depend on a protocol-level state
machine). Vest also offers systematic resistance to basic digital side-channel
attacks. Thanks in part to an elegant, trait-based treatment of parser and se-
rializer combinators in Rust, Vest verifies parsers and serializers for complex

34



formats, like WebAssembly [91] executables and TLS-1.3 messages, in under a
minute.

2.4 Verified Protocols

The miTLS project was a collaboration between Microsoft and INRIA that
started around 2010. Its 0.9 version [32] was a verified reference implementa-
tion of TLS, supporting TLS-1.0, TLS-1.1, and TLS 1.2, and was implemented
in mostly functional F# code with proofs by typing conducted using the F7
refinement type checker [20]. miTLS 0.9 had already been very influential, in
serving as a reference implementation of the standard, useful for interoperability
and conformance testing. It had also been used to carefully study the protocol,
and had led to the discovery of many bugs in other implementations and in the
standard itself.

Project Everest aimed to build an efficient, low-level version of miTLS, ex-
ecutable as a C program without a garbage collector, while also supporting
TLS-1.3. The goal was to also produce a proof of cryptographic security for the
entire protocol, including all its implementation details. We were following a
proof methodology developed originally by Fournet et al. [77], though scaled up
to support all the details of TLS, and integrated within Low⋆. This method-
ology enabled game-based cryptographic proofs by typing, relying on type ab-
straction and modularity to successively rewrite a concrete implementation into
a secure-by-construction, ideal functionality. The concrete probabilistic bounds
underpinning such game-hopping proofs were out-of-scope of mechanization and
were estimated by separate, on-paper formalizations.

TLS Record Layer Our first contribution was a full formalization and veri-
fied implementation of the TLS-1.3 record layer [61] in Low⋆. This work yielded
a high-performance implementation of the main streaming, “authenticated en-
cryption with additional data” (AEAD) functionality, covering all low-level de-
tails including message formatting, and showing that that it provided a cryp-
tographically secure stream. The underlying cryptographic primitives were also
verified in Low⋆ and taken from the HACL⋆ project.

QUIC Record Layer Building on this, we also developed a verified imple-
mentation of the QUIC record layer [62] in Low⋆, with a similar end-to-end
cryptographic security result, though this time it also included manually writ-
ten side-channel protections for the parsers and serializers. This record layer
was linked with an implementation of the rest of the QUIC protocol developed
in Dafny at CMU, though this code was only proven safe, rather than func-
tionally correct or cryptographically secure. The Dafny code was extracted by
an experimental C++ backend for Dafny that was developed for this project,
relying on reference counting. The resulting system is full-featured and reason-
ably performant, supporting 2 GB/s of throughput, approximately 79% of the
performance of a popular unverified implementation.

35



TLS Handshake In parallel with our verified implementations, we also worked
on pen-and-paper proofs. For example, we analyzed the downgrade security of
the TLS-1.3 handshake protocol [30], resulting in a change in the standard to use
specially encoded nonces for downgrade protection. The analysis of the TLS-1.3
key schedule turned out to be extremely difficult. One of the core difficulties in
the analysis is late domain separation. Concretely, important information such
as Diffie-Hellman shares and distinct labels for external PSKs and resumption
PSKs are not initially included in the key derivation, but, instead, are included
indirectly in the final key derivation when the TLS-1.3 key schedule includes
the transcript hash. Thus, internal keys are potentially shared between several
sessions, which complicates the analysis. Moreover, it requires an agile assump-
tion for extracting key values from Diffie-Hellman secrets. See Brzuska [42] and
Brzuska et al. [44] for more discussion.

State-separating proofs The complex nature of the TLS-1.3 key schedule
required us to develop new techniques for modular, code-based cryptographic
proofs. We contributed state-separating proofs (SSP), a method of writing code-
based cryptographic proofs where the code of a game is split into several mod-
ules, each of which has its own state [45]. The idea of SSPs, roughly, is to only
have two types of game-hops: Reduction game-hops and functional equivalence
game-hops. Since SSPs structure game code into a call-graph of modules, a
reduction to an assumption (which is also specified via a call-graph of modules)
consists simply in identifying the sub-graph corresponding to an assumption
game within a bigger game, and replacing the “real” assumption game with its
indistinguishable “ideal” counterpart [113, 133].

In a significant validation of the SSP technique, we used it to formalize
the TLS-1.3 key schedule on paper [44], with the main result proving, in the
computational model, that the keys output by the TLS key schedule are secure
as soon as any of their input key materials are secure. This was the main
result of our protocol formalization efforts, although the pen-and-paper proof
was only checked manually. The underlying research became a core component
of the PhD theses of Kohbrok [113] and Egger [70].

Post-Everest Subsequent work confirmed Project Everest’s proof of the TLS-
1.3 key-schedule, relating it to a concrete implementation of the TLS handshake.
Specifically, the work is in the context of Bertie, a fresh implementation in Rust
of TLS-1.3. Using Hax, Bertie’s code is translated automatically to SSProve [93],
a framework in Rocq for state-separating proofs. Following our pen-and-paper
SSP proof of the key schedule, the authors of Bertie developed a proof of se-
curity of the key schedule of Bertie in SSProve. Additionally, SSPs have been
formalized in EasyCrypt as EasySSP [68], as well as in SSBee [46], the latter
being two SSP-specific tools. SSPs have also been used to analyze MLS [43] and
secure multi-party computation protocols [47].

Separately, the DY* framework was developed in F⋆ for proofs of security by
typing in the symbolic model [25], and used to prove the security of a range of

36



protocols, including Signal [25], ACME [26], and ISO-DH and ISO-KEM [27].
In another line of work, the Owl tool applies information-flow types to cryp-

tographic secrets in order to provide computational security guarantees for pro-
tocols designs in an automated fashion [84]. It then compiles the design [173]
to a high-performance Rust implementation of the protocol (including parsing
and cryptography) that is completely automatically verified for correctness and
security preservation.

3 Industrial Deployments

From the outset, a key goal of Project Everest was to build verified software
and have it deployed in real-world systems. In this we succeeded, though the
path to deployment was sometimes circuitous. We start by describing some
general factors that contributed to our successes, and then relate some specifics
of each of our main deployments, for cryptographic primitives, for parsers, and
for protocol code. Much of this code has run in production for several years
now, without incident, and as our tools & libraries evolve and improve, more of
it continues to be deployed.

3.1 Some Enablers of Success

A key feature of Project Everest was to target the development of security-
critical components of larger systems, rather than building an entire verified
system. This focus on components was important, perhaps even more than we
expected. For instance, rather than a single “drop” of all of Everest’s verified
software, what we ultimately deployed was more piecemeal, with different com-
mercial customers picking and choosing parts of what we had verified. Despite
the pick-and-choose approach, we benefited from tackling a domain where each
component had clear, mathematical, functional and security specifications.

We also targeted standardized systems, since we expected that one imple-
mentation of a standard could be swapped with another more easily. This was
a good choice; however, standards typically prescribe end-to-end functionality,
not necessarily the software APIs involved. Hence, producing code that was
also API compatible with a consumer’s needs was a challenge.

Furthermore, the software industry broadly recognizes the difficulty of writ-
ing correct and secure cryptographic code and (to a lesser extent) parsing code
for attacker-controlled inputs. For cryptography, mantras such as “don’t roll
your own crypto” are well known, and they help encourage the adoption of
expert-written code with formal guarantees. Additionally, parsers are tedious
to write and there is a long precedent for using parser generators (e.g., yacc or
Protobuf), both of which contributed to the positive response to EverParse.

Another crucial choice was to deliver C code (or in some cases assembly) at a
level of quality similar to hand-written code, even down to idiomatic formatting
and including comments in the generated code. C worked well as a lowest
common denominator language, easily integrated with other systems without

37



requiring a significant change in toolchains. Delivering high quality source code
allowed consumers without verification experience to study our generated code
and to gain confidence in its quality by familiar code-review processes. Further,
it reduced concerns around Everest’s bus factor [55]: even in the absence of the
authors, our consumers could maintain our generated code. Providing auto-
generated code that is close to handwritten quality has worked particularly well
for deployments of EverParse. On the other hand, in some other cases, directly
verifying source code written in a mainstream language would have been an
easier sell.

From the beginning of Project Everest, we knew that achieving performance
that matched or exceeded the unverified code that we aimed to replace would
be critical for deployment. Many of our tool and design choices reflected this
emphasis on performance, and it paid off when interacting with potential con-
sumers. Without such strong performance, many conversations would simply
have been non-starters.

Finally, many of the integration success stories came via close collabora-
tions, and sometimes via in-person interactions. For instance, the HACS series
of cryptographic workshops, as well as various on-site internships, notably at
Mozilla, helped to build relationships and to initiate and support deployments.
At Microsoft, close collaborations with engineering teams, followed by their ad-
vocacy for verified code, have helped significantly. We are most grateful to all
our partners in these efforts.

3.2 Cryptographic Primitives

Our first major deployment success was for cryptographic primitives from HACL⋆

at Mozilla. Following considerable engineering investment, HACL⋆ eventually
reached a point where clients could “mix and match”, and integrate exactly
the algorithms they were interested in, by copying a handful of files into their
source tree, as opposed to taking a dependency on an entire, external library.
This proved to be a major boon for HACL⋆ adoption, as most other libraries
require a “wholesale” approach, e.g., building, linking and distributing the en-
tirety of OpenSSL. Mozilla spearheaded the initial integration effort, and now
around 17 cryptographic algorithms in NSS comes from HACL⋆ as portable
C code, including some SIMD variants. The Vale assembly implementation of
Curve25519 is also included in NSS. More recently, post-quantum cryptogra-
phy from libcrux, verified in F⋆ using the Hax toolchain, was also included in
NSS [33].

Jason Donenfeld integrated EverCrypt’s Curve25519 implementation into
his work on WireGuard in the Linux kernel. Eventually, Python, following
a CVE,17 adopted a large fraction of HACL⋆, starting with hash algorithms,
and continuing with all variants of HMAC.18 Other adopters include the Tezos

17https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-37454
18https://jonathan.protzenko.fr/2025/04/18/python.html

38

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-37454
https://jonathan.protzenko.fr/2025/04/18/python.html


blockchain19 and the ElectionGuard20 voting framework.
While KaRaMeL was always designed with the goal of producing readable

and maintainable C code, engaging with consumers on this forced us to ensure
that we really met this bar. For instance, KaRaMeL’s pretty printer had to
be revised to add additional parentheses for arithmetic expressions, since min-
imally parenthesized expressions are hard to read and even raise compiler or
linter warnings. Additionally, KaRaMeL supported a small DSL to control re-
combining multiple F⋆ files into a single C translation unit, tweaking visibility
of definitions in the process, and eliminating unreachable definitions.

Unsurprisingly, engaging with potential consumers of our code required pol-
ishing our code, revising our APIs, or implementing features that we had not
initially considered a priority. Working in a proof-oriented language, we could
add such features while ensuring that all the guarantees of the code were pre-
served. It was also important to be able to make such changes quickly, to
maintain the engagement of our consumers and to fit their deadlines.

For instance, at some point, HACL⋆ featured four different conventions for
error codes, as a result of different developers choosing different conventions
for the code they were developing. We eventually managed to settle on a uni-
form convention with an enum that indicates different error codes, rather than
distinguished return values (e.g., 0x0, 0x01, 0xffff etc.).

We had implemented multiplexing APIs in EverCrypt to take care of se-
lecting the best implementation of a given algorithm given the target CPU’s
capabilities—this was both interesting from a research perspective, and also a
requirement for using EverCrypt as a full-fledged cryptographic provider for a
protocol implementation like miTLS. However, outside consumers have yet to
request this multiplexing layer, since most already have their own version of
(unverified) CPU auto-detection. Furthermore, consumers’ CPU detection was
more comprehensive and precise than what we had, and took into account many
more platforms than what we had modeled.

On the other hand, our agile APIs, which offer a unified API for a variety
of implementations, without attempting to pick the best one automatically,
were more attractive. For instance, landing the Keccak family of algorithms
in Python required a new agile, but non-multiplexing API that exposed all six
algorithms in this family under one API. We also had to extend our API to
support the Blake2 hash function: Blake2 features a low-level API that allows
building a tree hash by tweaking many internal parameters of the hash function.
We had to extend and (in this case) revise our implementation of this low-level
API, because exposing these low-level tweaks required handling many subtle
issues.

Our libraries were also initially designed to not fully model memory alloca-
tion failures. For deployment in Python, we had to revise our code and proofs
to model malloc as potentially failing, and to handle and propagate such errors
gracefully.

19https://cryspen.com/post/introducing-hacl-packages/
20https://github.com/Election-Tech-Initiative/electionguard-cpp/issues/22

39

https://cryspen.com/post/introducing-hacl-packages/
https://github.com/Election-Tech-Initiative/electionguard-cpp/issues/22


As a general principle, our APIs are defensive, moving static preconditions to
run-time checks, to protect against errors in unverified C clients. Tool support
to automatically and efficiently wrap APIs with defensive variants, as in secure
compilation or gradual verification, could be useful.

3.3 Parser Generators

In 2018, Barry Bond, an engineer on the Project Everest team with long ex-
perience in systems development at Microsoft, observed that verified parsers
produced by EverParse could help secure attack surfaces in the Windows kernel
and elsewhere. In 2019, working closely with MORSE,21 a cross-cutting offense
& defense security team at Microsoft, we followed a data-driven approach using
past vulnerabilities to identify a few critical attack surfaces in Microsoft’s OS
and cloud infrastructure that would benefit from the use of formally verified
parsers.

An initial area of focus was Microsoft Hyper-V’s Network Virtualization
stack, and working closely with the engineering teams, we designed a specifi-
cation language called 3D for data-dependent, variable length formats, for use
by C programmers (Section 2.3). This process of co-development of verification
tooling with an engineering team was very productive and led to the creation
of a solution that both solved an immediate need, and was general enough to
be used to address a class of issues (parsing attacker-controlled inputs) broadly
felt in many systems. Not only did the co-development lead to several iter-
ations of the language design, but the specific formal guarantees provided by
the toolchain were also refined. Notably, it was important to ensure double-
fetch freedom, guaranteeing that the C parsers do not read any portions of an
attacker-mutable input buffer more than once. Enhancing our proofs to pro-
vide this property was a requirement for deployment, and doing so quickly was
important to meet product deadlines.

Using a specification language backed by a verified parser generator provided
several benefits. Notably, the 3D specification of a format serves as a defini-
tive source of truth, and is easier to understand than imperative C code with
subtle corner cases of undefined behavior. It was also seen as a productivity
boost: a few lines of refined, data type specification yielded many more lines of
tricky, yet provably correct, C code. Further, future issues could be addressed
systematically by editing the specification, or, if needed, by revising the code
generator. However, successful deployment required surmounting three hurdles:
specification discovery, performance, and maintainability.

Specification discovery & testing Unlike for some of our other efforts
which targeted standards-based software, 3D is used in settings where there
is little specification aside from the behavior of an existing software component.
Replacing such a component, even if only replacing its parsers, requires careful

21https://www.microsoft.com/en-us/security/blog/author/microsoft-offensive-research-
security-engineering-team

40



code reading and testing to discover its specification, followed by specifying its
input format in 3D—a process we refer to as specification archaeology [100].
Doing so required treading a delicate balance between specifying the desired
behavior versus maintaining existing behavior to avoid introducing interoper-
ability regressions. Of course, since the generated code from 3D is proven safe
and correct, one can be sure that one does not inadvertently match any inse-
cure behaviors of the existing parser. For Windows Network Virtualization, we
specified the format of more than a hundred different kinds of messages span-
ning four different protocols, with extensive differential testing to ensure that
no unintended breakages were introduced.

Performance The product teams required that our verified parsers impose
no more than an end-to-end overhead of 2% in throughput. This we were able to
meet, and even exceed. In some cases, our generated code is faster than previous
unverified code, despite containing more checks, usually because our code is
designed to be zero-copy, whereas prior code would incur copies in some places,
since this was easier for a human to write. As mentioned in Section 3.1, not
compromising on performance while delivering security & correctness guarantees
is a key enabler of success.

Maintainability Providing high-quality C code was an important factor for
maintainability, since it meant that other engineers trying to understand the use
of 3D could use familiar C code as a point of comparison. C code also integrated
well with existing profiling and debugging infrastructure, and it provided the
option for emergency hot-patching, should the need arise. The generated code
had to conform with the coding guidelines of the Windows OS, and for this,
KaRaMeL provided specific formatting features. In addition, we relied on clang-
format, a source-code formatting tool to enforce various syntactic conventions
(indentation, brace positions, etc.). For Windows Network Virtualization, we
generated around 30,000 lines of verified C code from about 5,000 lines of heavily
commented 3D specification. The code has run in production for 5 years now,
without incident, although we have revised the specification and regenerated
the code as the system has evolved. On occasions when the specification has
been revised or refactored for clarity, we have proven using F⋆ that the change
introduces no semantic difference. The generated C code has, to date, never
been patched directly.

Instead of simply deploying verified parsers for a given format, we actu-
ally deployed our entire verified parser generator toolchain in the Windows
build environment. Using a build tool extension feature, today EverParse, F⋆,
KaRaMeL, and Z3, are all available for use within the build of every Windows
developer. In various OS components, a 3D specification is checked into the
source tree, along with the generated C files. Any change to the 3D specifica-
tion forces the 3D code generator to be run again, regenerating the C files.

Starting with our initial deployments for network virtualization as described
by Swamy et al. [183] and in an MSR blog post [159], 3D’s functionality and

41



usage has grown to other products, ranging from parsing file formats, to validat-
ing pointer-rich data structures. 3D has also been augmented with a symbolic
test case generator, 3DTestGen, encoding 3D specifications to SMT and call-
ing Z3 to generate test cases, thus allowing components specified in 3D to not
only benefit from verified parsing, but also from extended test suites and better
fuzzing tools. Further, we have built AI agents to assist in authoring 3D speci-
fications [73], using the tests produced by 3DTestGen as feedback to repeatedly
refine a specification.

3.4 Protocols

miTLS-fstar, was used in several interoperability workshops at the IETF, while
the TLS-1.3 RFC was being drafted. Our implementation was revised several
times to be compliant with several iterations of the draft. As the QUIC pro-
tocol grew in importance and started to be standardized at the IETF, we also
implemented an (unverified) version of QUIC in Low⋆, and this too was used
for interoperability experiments.

Around 2018, Microsoft began the msquic project,22 a cross-platform im-
plementation of the emerging QUIC standard. Our miTLS implementation,
notably the handshake and its support for early-data/0RTT-mode was used at
Microsoft as the default implementation of the TLS handshake for msquic. We
made frequent drops of C code from our implementation to msquic, enabling its
development. A limitation was that miTLS-fstar’s handshake relied on an un-
verified region-based memory allocator, so that all data associated with a given
TLS connection could be allocated in that region and then torn down when
the connection was closed. This stop-gap implementation allowed us to iterate
rapidly, while providing value to the msquic effort as it ramped up.

Eventually, our reference implementation was superseded by Microsoft’s
Schannel library once it gained support for TLS-1.3. Schannel had been and
continues to be the default implementation of TLS in Windows. Nevertheless,
our work speaks to the value of producing a full-featured version of the stan-
dard while it was being drafted. Indeed, work on miTLS-fstar helped uncover a
few subtle bugs in the draft TLS-1.3 standard, and also helped with their fixes.
For instance, attacks such as LogJam23 had already demonstrated empirically
that older versions of TLS were susceptible to downgrade attacks. While early
drafts of the TLS-1.3 standard already provided stronger protection against such
downgrade attacks, they were still susceptible to version downgrade attacks in
which an attacker downgrades a connection to TLS 1.2 or lower and then mounts
one of the known downgrade attacks. This was mitigated in Draft 11 of TLS-1.3
and members of the Everest project developed a cryptographic security proof
in [30] that was incorporated into the Everest development. Other reference
implementations and analyses of TLS-1.3, including in the symbolic model, also
uncovered and led to fixes in the standard [28, 56, 57].

22https://github.com/microsoft/msquic
23https://weakdh.org/

42

https://github.com/microsoft/msquic
https://weakdh.org/


Our pen-and-paper SSP proof for the fixed key schedule [44] shows that
the full derivation history of keys is implicitly authenticated. It is noteworthy
that the derivation history does not include the identity of out-of-band (i.e.
external) PSK holders. This enables a subtle reflection attack [67], if more than
two parties (one client and one server) share the same PSK.

After Project Everest, developments in the protocol verification in Everest’s
ecosystem have focused on messaging protocols, notably on MLS [17]. For ex-
ample, Wallez et al. [195, 197] formalize the protocol standard in F⋆, developed
in a parametric style that allows both executing the specification as a reference
implementation (using HACL⋆) that interoperates with other implementations,
as well as yielding a security model that is analyzed using DY* for a modular
proof of cryptographic security in the symbolic model. This effort led to several
revisions in the protocol standard, after the analysis revealed security attacks.

4 Challenges & Reflections

In this section, we describe several challenges that we faced, some that we
overcame and others that remain. We also share some thoughts on what we
may have done differently.

4.1 Coping With Change

Working with an evolving language was an explicit goal of the project, and it
allowed us to develop custom tooling and add useful features. However, keeping
all our projects working while the language evolved was also a challenge. For
instance, HACL⋆ was pinned to an older version of F⋆ in 2017-2018 because the
language was changing too quickly. Eventually, we had to upgrade HACL⋆ to
the latest version and then keep it up to date, which took nearly a year. These
days HACL⋆ is built regularly with the latest F⋆ development version, though
it has been a significant challenge to keep a large verified code base always up
to date and working with an evolving compiler and libraries. The underlying
SMT solver was also pinned to Z3 version 4.8.5 (released in 2019), and only in
2024 did we start to upgrade to the latest Z3 4.13 release.

Despite the evolving language, we managed to quickly grow a large body
of code written using Low⋆ and its libraries. However, this was also a mixed
blessing. Although we made significant advances on the underlying proving
technology (e.g., moving to an approach based on separation logic), transitioning
to these newer libraries and DSLs was difficult, since we already had such a
large Low⋆ code asset (see Section 2.1.4). Smoothly migrating between libraries,
DSLs, and language versions is difficult (e.g., the migration from Lean 3 to Lean
4 was a monumental multi-year effort, using custom porting tools combined with
manual code and proof restoration work24) and future efforts are likely to face
similar challenges.

24https://github.com/leanprover-community/mathport

43

https://github.com/leanprover-community/mathport


4.2 Soundness and Trust

F⋆ evolved in support of new language features (better type inference, metapro-
gramming, universe polymorphism, etc.) and libraries, but it also required fixes
to soundness bugs we discovered along the way. In total, we have found 26
soundness bugs in F⋆, including three open issues that are undergoing repair.
This appears to be similar to experiences in other proof assistants, where un-
soundness issues are found and fixed over time. For instance, a quick search of
the bug databases of Dafny, Rocq, Why3, Agda, and Lean shows many sound-
ness bugs found and fixed in each tool over the years. Z3 has identified and
fixed soundness bugs as well, although we have yet to find a soundness bug in
Z3 triggered by the proof of an F⋆ program (we have however reported other
kinds of Z3 bugs). One may wonder if soundness bugs in verifiers undermines
the entire verification effort—this is a valid concern. However, most soundness
bugs are triggered by corner cases and pathological programs which a typical
user rarely writes.

Most soundness bugs in F⋆ have been due to implementation bugs (e.g., due
to incorrect or missing checks), but three issues were more conceptual. The
first is related to a mixture of functional extensionality and subtyping, which
was identified by Aseem Rastogi and fixed in 2018.25 A similar issue was later
found in Liquid Haskell, another system that has a similar mixture of subtyping
and extensionality, although the fix employed there is different than the solu-
tion F⋆ used [192]. Another conceptual issue was related to the injectivity of
type formers, which we realized was unsound from prior work on Agda, which
Leonardo de Moura had encountered from his work on Lean.26 This was fixed
in 2020, although the fix had to be revisited several times. A third conceptual
issue was observed by Gabriel Ebner and involved an incompatibility between
classical axioms and monotonic state, the fix for which involved changing the
way we represented monotonic predicates.27

Eliminating unsoundness bugs is a significant challenge for a complex lan-
guage and implementation, and it is not clear how one might avoid them entirely.
One might formally verify the verifier itself, and indeed, a prior version of F⋆

did use a formally certified core typechecker to avoid such issues [176]. Apply-
ing this approach to F⋆ as it is today would be a very significant effort, though
such efforts are underway for other proof assistants, notably in the MetaRocq
Project [174]. We also have formalized various small fragments of F⋆, which
has helped provide some assurance, but a formalism that covers all of the fea-
tures of modern F⋆, including extensionality, subtyping, universes, erasure, and
non-termination, does not yet exist; we have recently started to work on this.

Beyond our core verification tools, we also rely on the trustworthiness of
our code-extraction pipeline (as do other verification tools). For us, this means
taking steps to ensure KaRaMeL is trustworthy.

In addition to good engineering practices, such as auto-generated visitors,

25https://github.com/FStarLang/FStar/issues/1542
26https://github.com/FStarLang/FStar/issues/349
27https://github.com/FStarLang/FStar/issues/2814

44

https://github.com/FStarLang/FStar/issues/1542
https://github.com/FStarLang/FStar/issues/349
https://github.com/FStarLang/FStar/issues/2814


and small, auditable, composable nanopasses (Section 2.1.3), KaRaMeL employs
an internal bidirectional type-checker that regularly re-checks the internal rep-
resentation for typing errors throughout the compilation process; the generated
C code also gets re-checked by the C compiler and its diagnostics mechanisms;
ultimately, the KaRaMeL developers can check the impact of their changes by
looking at a diff for the resulting C code.

Fundamentally, Low⋆ and KaRaMeL are carefully designed to capture the
semantics of a (well-behaved subset of) C, which by construction rules out many
sources of undefined behavior. As described in Section 2.1.5, we also had a pen-
and-paper formalization of compiler correctness.

In spite of all of the above, we still discovered a total of six bugs that were
caught by neither our formalization, the internal KaRaMeL checker, nor the
C compiler, and had to be identified by debugging incorrect end-to-end tests.
The first one was in an implementation of a masking equality function (de-
signed for side-channel resistance), which was a hand-written part of krmllib,
the KaRaMeL “standard library”. We rewrote and verified this function in
Low⋆, and extracted it, rather than hand-write it. The second one was a rare
case where an array allocation is of the form let x = malloc 1 e (where the
initial value e refers to a variable x already in scope), and e is such that the
allocation needs to be compiled as a C malloc followed by an assignment. Both
were handled properly, but the combination initialized x with a reference to
itself. The third issue relates to a mismatch between implicit integer promo-
tions in C and homogeneous machine integer operations in Low⋆: for instance,
(255uy + 1uy)/2uy gives 0uy in Low⋆ (uy denotes unsigned 8-bit integers), but
((uint8 t) 255 + (uint8 t) 1) / (uint8 t) 2 gives 128 in C. An elaborate
reconstruction procedure was added in KaRaMeL to align both semantics. A
fourth issue had to do with writing a 32-bit integer in memory as little-endian
bytes, a primitive that is implemented by hand in the KaRaMeL standard li-
brary. We wrote *((uint32 t) ptr) = x;, forgetting that failing to guarantee
pointer alignment is undefined behavior. This was easily fixed by using memcpy

instead. A fifth issue was more subtle and had to do with lexical scope (in the
source Low⋆) and C99 block scope (in C). In some cases, the lifetime of stack
arrays was shorter in C compared to Low⋆, something which was fixed with a
dedicated nanopass.

A final issue is that, despite our extensive study of the C standard, we
discovered years later that NULL+0 was undefined behavior in C. We devised
a patch to our Low⋆ model of null pointers and briefly contemplated revising
our proofs, but the sheer amount of code that was impacted deterred us from
doing so, and we instead ran the generated C code with sanitizers enabled in our
test suite. In a last-minute plot twist, and right before this article was going
to press, the C standard committee actually approved a revision that makes
NULL+0 well-defined,28 to our immense delight.

28https://developers.redhat.com/articles/2024/12/11/making-memcpynull-null-0-well-defined

45

https://developers.redhat.com/articles/2024/12/11/making-memcpynull-null-0-well-defined


4.3 Adapting Proofs & Confronting SMT Instability

Our reliance on SMT solvers for proofs enabled us to scale quickly to a large
verified code base. As a rough estimate, the Project Everest codebase contains
more than 600,000 SMT automated proof obligations. Although a very coarse
measure with a lot of variance, in projects like HACL⋆ that focused on producing
executable C and assembly code, our proof-to-code ratio of 2:1 compares quite
favorably with other verification efforts, and speaks to the level of automation
we enjoyed using a combination of SMT solving and metaprogramming. Other
projects, e.g., EverParse, produce no executable code directly, and instead offer
tools to generate code from specifications.

Using SMT solvers to automate proofs also helped with proof maintenance
and repair [166], a topic that others have studied in the context of interactive
proof assistants. SMT-backed proofs typically cope well with changes to a pro-
gram and its proof structure. Certainly many semantics-preserving but struc-
ture altering changes are handled transparently, e.g., reordering the clauses in
a conjunct, strengthening a precondition or weakening a postcondition, switch-
ing between specification styles such as using a refinement type instead of a
precondition, etc. are handled seamlessly, in the vast majority of cases.

That said, SMT solvers are not a panacea, and we often also suffered from
proof instability [95, 207], where tiny semantics-preserving changes (e.g., even
simply renaming variables) affect the SMT solver’s search heuristics enough to
change its result or performance. Similar issues arose when moving from one
version of the solver to the next (a major reason why F⋆ was pinned to a 2019
version of Z3 for so long—Section 4.1), or even when running the solver on
Windows versus macOS.

Zhou et al. [206, 207, 209] have studied proof instability in depth, includ-
ing in projects that used F⋆ and Dafny. They report that between 2–5% of
proofs can be unstable in the various projects, although these results are likely
optimistic, since they measure completed projects, rather than the instability
that developers encountered and overcame during development. Our experience
across a typical build of Project Everest is that the number of unstable proofs
is considerably lower, since in a codebase with 600,000 SMT-automated proofs,
an instability rate of even 0.001% can result in half a dozen build failures for no
apparent reason, which is not our experience. However, this low rate can also be
attributed to all the effort expended to make proofs stable, since most proofs in
our main branches have survived through tens of thousands of commits. Newer
proofs that have yet to be refined do fail more often, a significant problem that
can frustrate proof maintenance and evolution efforts. Particularly painful is
when a change one developer makes triggers an instability-related failure in an-
other developer’s code. Negotiating the technical and social aspects of such
failures (e.g., assigning blame for build breakage) can be challenging.

Specifically, an unstable proof manifests as an F⋆ program whose verification
condition was once deemed UNSAT (meaning the program is proven) to instead
fail with UNKNOWN. F⋆’s encoding to Z3 makes ample use of quantifiers and,
as such, the problem of entailment checking is undecidable. As such, on proof

46



failure, Z3 seldom reports SAT, and instead reports UNKNOWN with a partial model
useful for an error report, or can simply time out. Time-outs are particularly
frustrating, since in such cases F⋆ cannot report a well-localized error.

To control the time-out behavior, Z3 exposes a logical resource limit (based
on counting the number of allocations), and F⋆ users can set this resource limit
on a per-proof basis when invoking Z3. Proofs with a large resource limit allow
Z3 to search for a proof for a long time; but, such long-running proof searches are
also sensitive to internal search heuristics. As such, we generally preferred proofs
with smaller resource limits, aiming to find a balance between predictability and
automation, though striking the right balance is not always easy, especially for
newcomers. Committing a proof with a large resource limit is usually a bad idea,
and it is likely that such a proof will soon break and have to be revisited—a few
large resource limit proofs remain in various projects and have become notorious
among the maintainers, and failures in these proofs are the usual suspects in a
broken build.

We attempted to address proof instability in the following ways.

• Abstraction: We heavily used F⋆’s module system, as well as various con-
trolled opacity mechanisms, to hide definitions from the SMT solver.

• Structured proofs: For families of proofs that follow a similar shape, it is
sometimes useful to design combinators or even special syntax to create
them. One instance of this was introducing “calc” proofs [124], where an
equality (or more generally any transitive relation) is proven by a series
of steps. Every step is isolated from the others, which greatly improves
SMT performance and helps to make the proof human-readable.

• Proof replay: Once the solver finds a proof, F⋆ provides a feature to record
the solver’s “unsat core”, the subset of the original axioms that allowed the
solver to derive UNSAT. F⋆ can then use this core to replay a proof on sub-
sequent runs—this helps minimize the sensitivity to search heuristics and
also improves verification-replay times. However, recording and replaying
unsat cores comes with other challenges, including complexity in the build
system, storing additional files with unsat cores in the repository which
need to be refreshed periodically, as proofs and tools change. Addition-
ally, for various technical reasons, a small fraction of unsat cores cannot
be replayed.29 Fully reconstructing the SMT proof in F⋆ would be an
interesting but challenging direction to pursue, e.g., following techniques
used by tools like Sledgehammer for Isabelle [36].

• Context pruning: F⋆’s default behavior is to encode all pure definitions
in the dependency graph to the SMT solver. This can lead to very large
SMT files, sometimes with premises numbering in the hundreds of thou-
sands. F⋆ provides a small language of options to selectively remove some

29https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#

hints-that-fail-to-replay

47

https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#hints-that-fail-to-replay
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#hints-that-fail-to-replay


premises from the SMT solver’s context—expert developers used this fea-
ture in places, though this was often a last resort to stabilizing a proof.
More recently, with learnings from Verus [206], F⋆ has taken a more sys-
tematic approach to context pruning, using a syntactic reachability crite-
rion to slice away a large fraction of the premises from the SMT solver,
with significant improvements in proof performance and stability. Context
pruning is on by default in F⋆ today, and many projects have found it to
both improve proof performance as well as to provide a similar level of
proof stability as record-and-replay of unsat cores.

• Selective use of theories: To promote proof stability, some projects dis-
abled the use of the nonlinear arithmetic theory in the SMT solver—this
theory is known to sometimes be both inefficient and unstable [75, 95, 122].
The Vale and Zeta [13] projects both adopted this approach. Other
projects disabled non-linear arithmetic selectively, e.g., in HACL⋆, dis-
abling non-linear arithmetic was seen as too onerous for newcomers, but
expert-authored parts of the library have disabled non-linear arithmetic
reasoning in Z3.

• Uncovering instability: We added options to F⋆ to retry proofs multiple
times, sometimes with different random seeds, and to report results from
these attempts. Proofs that do not consistently succeed encourage the user
to focus on spelling the proof out in more detail, until the proof stabilizes.

• Not SMT only: Finally, for proofs that are not efficiently and stably auto-
mated by SMT, F⋆ provides other means to do proofs, including normal-
ization and tactics—this places a greater burden programmer, but at least
provides a way to get the job done. That said, choosing a proper combi-
nation of dependent types, SMT solving, normalization, and tactics, using
each where they work best, is a big part of what makes a good verification
design.

SMT proof instability was exarcebated by the interaction among many dif-
ferent concerns when doing a complex proof. One anecdote is from HACL⋆,
which provided “streaming” APIs to allow clients to feed an arbitrary number
of bytes into an algorithm, relying on a library-managed, internal, long-lived
piece of state that stores data in a buffer until a full block can be flushed into
the underlying block-based algorithm. This API required simultaneously rea-
soning about modifying heap state, while allocating temporaries on the stack
and juggling multiple pieces of data (key state, block algorithm state, user data,
output array, etc.). While initial experiments were promising, over time, this
piece of code turned into a frustrating effort where proofs would regularly break
for because of proof instability. Ultimately, this piece of code was almost en-
tirely rewritten in a very manual style, performing memory reasoning entirely by
explicitly calling lemmas, disabling non-linear arithmetic, pruning the context
to remove problematic premises, and adding verbose intermediate assertions in

48



the middle of large stateful functions that required writing and maintaining
complex descriptions of intermediary states.

Further research into proof stability and transparency into the SMT solver’s
proof search is an important area of ongoing [9, 206, 209] and future work.

4.4 Visibility of Proof States

SMT-based proof assistants, including F⋆, Verus, and Dafny, by default, encode
the verification condition for an entire procedure into a single SMT query. If a
query fails, a typical mode of interaction is for the user to assert intermediate
facts, checking to see what the solver is able to prove, and then focusing their
attention on elaborating the parts of a proof that the solver has trouble with.
Although the final proof can be terse, sometimes the process of finding that proof
can involve many steps of exploration not often preserved in the final artifact.
Performance problems with proof search in the solver requires understanding
how quantifier instantiation works, and to wield a variety of profiling tools that
Z3 provides.

This is a very different mode of interaction than what is offered by a tactic-
based interactive prover, where at each step of the proof, the context and goal
are explicitly visible to the user. We often had visiting researchers or interns
who were used to the proof-state interaction of tactic-based provers for whom
the style of asserting intermediate facts was alien, at least at first. Of course,
debugging the behavior of ad hoc automation with tactic scripts also has its
own set of distinct challenges.

Recent developments in Pulse aim to address the proof-state visibility prob-
lem, by employing a symbolic execution with several small SMT queries, rather
than a single query for an entire procedure. This enables Pulse to present in
full detail the proof state at each step to the programmer, similar to a style
called live verification [87] that others have proposed. Pulse also aims to im-
prove proof stability, by ensuring that the proof of a prefix of a procedure body,
once completed, cannot be affected by the suffix. Aeneas [97] has taken another
angle on this, by translating Rust programs to pure functions in Lean and then
conducting interactive tactic-based semi-automated proofs.

4.5 Requiring Deep and Broad Expertise

Doing protocol proofs at the level of detail of implementations was a significant
challenge, for several reasons.

We aimed to provide cryptographic security guarantees about the actual low-
level C code, rather than just a model of the protocol—a very ambitious goal.
We aimed to do this effectively in a single proof step, mixing cryptographic
ideal functionality with the executable code, and relating them by a form of
information-flow typing encoded using type abstraction.

Doing such a proof required team members to master the protocol standard;
the low-level system design; the Hoare-style program logic and how to write
scalable, stable proofs while mastering the various proof styles that F⋆ offers;

49



and finally, one had to also understand the cryptographic proof on paper and
its manifestation in the code. No one person in the team was expert in all of
this, and the exchange of information and ideas took a lot of effort, teaching,
and delegation from one part of the team to another.

We believed then that it was too costly to introduce additional abstraction
layers, e.g., to first relate the executable code to a simpler idealized model, and
then to carry out a cryptographic proofs on the model. In hindsight, this might
have helped in separating concerns and allowed us to make better progress. We
did apply this refinement methodology in other parts of the project, though not
at the scale of the TLS protocol itself. For example, HACL⋆ proofs involved a
low-level functional specification related to the actual code, and then a second
high-level specification proven to abstract the low-level one; EverParse adopted
a methodology of layered combinators; and some post-Everest work applied a
layered approach to protocol security as well [98]. Later work on Owl [84] also
explicitly separates cryptographic reasoning from implementation reasoning.

We also took some steps to onboard people who were experts in cryptog-
raphy, though not in program proof. For instance, HACL⋆ includes a set of
libraries built on top of F⋆’s standard library, offering a smaller surface area
of functionality for a newcomer to study, and supporting various usage pat-
terns that were idiomatic in HACL⋆, though such patterns were tailored to one
specific style of code—both their strength and weakness.

5 New Directions

Drawing lessons from Everest, and responding to new trends in computing,
we describe several ongoing efforts and speculate a little on the path ahead
for building & deploying high-assurance systems at scale. We focus primarily
on some topics being actively explored by teams involving members of Project
Everest.

5.1 High-assurance Systems Programming in Rust

Rust’s emergence as a convincing safer alternative to C and C++ for systems
programming is a prominent industrial trend, with many major companies,30

open source projects,31 and governments32 announcing initiatives investing in
Rust.

The program verification research community has responded to this trend
with many projects now targeting Rust programs, from a variety of angles. Due
to its strong ownership discipline, safe Rust programs can, in many cases, be
reasoned about without resorting to an explicit notion of heap and addresses.

30Amazon [135], Google [85], and Microsoft [134]
31Linux [155] and Mozilla [137]
32For instance, the Biden administration’s National Cyber Security Strategy [199] advo-

cates for the use of Rust and other memory safe programming languages, while also calling
out Project Everest’s work on verification for securing the software supply chain. DARPA’s
TRACTOR program [58] also aims to stimulate research into translating C code to Rust.

50



The design space of such tools is large, offering guarantees ranging from bug-
finding by bounded model checking to functional correctness. We cover three
main approaches: custom verifiers for Rust; tools that translate Rust into other
proof assistants; and, finally, frameworks that emit verified Rust code.

Custom Verifiers for Rust Tools like Prusti [200], Flux [121], and Verus [120]
and several others [63, 83, 191, 212] analyze annotated programs in custom logics
designed specifically for Rust. For instance, Verus leverages Rust’s ownership
discipline through a logical encoding that it sends directly to Z3, aiming to
provide an experience similar to Dafny or F⋆. However, due to Rust’s owner-
ship, its logical encoding does not explicitly encode a mutable heap, resulting in
verification times can be orders of magnitude faster [119]. Verus also supports
reasoning about concurrency, though shared memory does add some additional
proof obligations. Verus has already enabled the verification of complex systems,
ranging from OS microkernels [52], security modules [210], cluster management
controllers [178], programming tools such a concurrent memory allocator [119], a
library for NUMA-aware concurrent data structure replication [119], a crash-safe
storage system [119], and even a library for verified parsers and serializers [48]
similar to EverParse.

Translating Rust to Proof Assistants The Hax tool [31] targets the ver-
ification of sequential Rust programs (decorated with specifications and proof
hints) into a variety of proving backends, including F⋆ and Rocq [92]. The
F⋆ backend targets a pure fragment of F⋆, with SMT-backed proofs, whereas
the Rocq backend targets an imperative DSL called SSProve [93] embedded in
Rocq, with interactive proofs for cryptographic protocols in the computational
model. There is also a backend to Proverif [35], for security proofs of cryp-
tographic protocols in the symbolic model. Hax has also been used to verify
a range of security protocols and cryptographic code, including post-quantum
cryptographic algorithms now deployed by Mozilla and OpenSSH, and a sym-
bolic proof of security for TLS-1.3 via translation to Proverif [31]. As men-
tioned previously Section 2.4, in a substantial end-to-end proof [175], Hax has
been used to prove the correctness and security of Bertie, a Rust implemen-
tation of TLS-1.3, including automated proofs of runtime safety and parsing
correctness via translation to F⋆; a proof of computational security for the key
schedule via translation to SSProve (a transcription of the pen-and-paper state-
separating proof from Project Everest [44]); authenticity, confidentiality and
post-quantum security via translation to Proverif; and using verified cryptog-
raphy from HACL⋆—achieving, in a sense, the protocol level implementation
proof that was left unfinished in miTLS-fstar.

Like Hax, Aeneas [97] also translates sequential Rust code into other proof
assistants. However, it targets the verification of unannotated Rust code. It
leverages Rust’s ownership types through a functional, executable encoding of
sequential Rust programs that can be sent to a variety of proof assistants, no-
tably Lean, but with support also for F⋆, Rocq and HOL4. This allows a proof

51



engineer to specify and reason about the behavior of the translation output,
enabling a clear division of labor between software engineer and proof engineer.
Aeneas has invested heavily in the Lean theorem prover, allowing the proof
engineer to benefit from an interactive mode first and foremost, then defer to
automated tactics and proof-search procedures (Aesop, Lean-Auto, Duper). as
a controlled way to automate proofs. In an ongoing effort, Microsoft’s cryp-
tographic library, SymCrypt, is being rewritten in Rust, with Aeneas used to
verify functional correctness.

Extracting Rust from Proof Assistants Continuing the design spirit of
languages like Low⋆, one can also develop verified code in languages that model a
subset of Rust, and then extract Rust code after verification. Notably, KaRaMeL
has evolved to include a Rust backend [80], which reconstructs structured, safe
Rust code out of KaRaMeL’s C-like input language. Low⋆, Steel, and Pulse
can now be compiled to Rust, though one must program in a source discipline
that mimics Rust’s borrow checker to ensure that the generated Rust code com-
piles. For instance, if the programmer made use of aliasing permitted in, say,
Pulse (e.g., doubly linked lists, expressible safely in Pulse but not in Rust),
the resulting program could fail to borrow-check in Rust. Using this capability,
EverCBOR [158] develops verified parsing and serialization tools for a range of
format standards in Pulse, and it extracts the code to both C and Rust, sup-
porting consumers from both ecosystems. Additionally, using Rust support in
KaRaMeL, HACL⋆ can now be extracted to Rust, enabling consumers to adopt
Rust code directly, instead of C code with Rust wrappers.

5.2 Tools for Cryptographic Applications

Formal analysis techniques for cryptographic applications remains an important
area of research: we briefly mention a few themes.

Side channels The emergence of speculation-based micro-architectural side
channels [111, 129] has led to a flurry of activity to find and defend against
such attacks [99, 144, 193], including in cryptographic settings [114]. Side chan-
nels in cryptographic implementations continue to be an important problem,
independently of speculation [24].

State-separating proofs (SSPs) As discussed in Section 2.4, tools such as
SSProve and SSBee implement the state-separating proofs formalism. However,
one important limit of both SSProve and SSBee are statistical indistinguisha-
bility arguments, which they cannot prove, but rather need to use as an as-
sumption. Those, in turn, can be precisely argued about in EasyCrypt [19].
A promising future direction is to export assumptions from SSProve and SS-
Bee to EasyCrypt, so that they can be verified in EasyCrypt. Another useful
combination might be to use SSBee for fast prototyping of invariants for use in
EasyCrypt; invariant search in EasyCrypt can be time consuming, since trying

52



each candidate invariant may require substantial re-writing of the proof attempt.
A third approach, pioneered in EasySSP [68] is to directly perform SSP anal-
yses in EasyCrypt. State-separation is an instance of using information-flow
control to structure cryptographic proofs, although not the only one. For exam-
ple, Owl [84] exploits an information-flow type system to track dependencies, or
lack thereof, among the components of a protocol as a basis for modular proofs.

Post-quantum Cryptography As the industry transitions to the use of
post-quantum cryptographic primitives, there is an opportunity to base the
next generation of cryptographic implementations on formally verified imple-
mentations. Many organizations have seized this opportunity, working closely
with formal verification experts, including from Cryspen [109], a cryptographic
verification startup built around high-assurance cryptographic software inspired
by HACL⋆ and related technologies.

5.3 AI-assisted Specification & Proof

Another prominent trend of the past few years has been the emergence of gen-
erative AI, especially for programming tasks with tools like GitHub Copilot
seeing widespread use. However, as has already been widely reported [146], the
trustworthiness of AI-generated code is questionable. Having AI tools target
proof-oriented programming languages could be a promising direction, both to
ensure that AI-generated code is correct, as well as to reduce the human cost
and expertise to produce code with proofs. This has been observed by many,
with a growing sub-field studying the use of AI models for specification and
proof engineering [51, 76, 107, 116, 128, 147, 156, 169, 177, 187, 201, 202].

Although there have been few controlled studies of users of proof assistants
(though a few such studies are beginning to emerge [167]), anecdotally, we re-
mark that AI assistants help in lowering the barrier to entry for proof assistants.
For instance, a general purpose chatbot can already produce common textbook
algorithms and proofs in many proof languages, allowing newcomers to explore
how familiar idioms are expressed and proven in languages that may otherwise
be unfamiliar. Code authoring assistants, such as GitHub CoPilot, are trained
on code from many proof-oriented languages and some of the present authors
(experts in their tools) use these tools as part of their daily workflow for code
completions and to automate simple refactorings of code backed by proofs in F⋆

and other languages.

Formalized mathematics Going further, for instance, in the area of formal-
ized mathematics, several prominent mathematicians have begun to conceive
of AI copilots to assist experts in building large proofs, especially in Lean.33

Spurring progress in this direction, pilot projects have been proposed to assess
the ability of AI to assist humans in a large collaborative proof effort.34 Formal-

33https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/
34https://terrytao.wordpress.com/2024/09/25/a-pilot-project-in-universal-algebra-to-explore-new-ways-to-collaborate-and-use-machine-assistance/

53

https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/
https://terrytao.wordpress.com/2024/09/25/a-pilot-project-in-universal-algebra-to-explore-new-ways-to-collaborate-and-use-machine-assistance/


izing high-school mathematics or solving problems from the International Math
Olympiad (IMO) is also receiving a lot of attention, with remarkable recent
progress [162, 198].

Software proofs More geared to software proofs, the Project Everest code-
base is a valuable artifact for training and evaluating the progress of AI tools
in proof engineering. Indeed, Chakraborty et al. [50] assemble a data set of
940,000 lines of code and proof in F⋆, consisting largely of Project Everest code,
coupled with various useful metadata (e.g., proof dependencies), proof-checking,
and benchmarking tools. They also prompt large language models (LLMs) and
fine-tune various smaller models to synthesize F⋆ code and proofs from formal
specifications. Chakraborty et al. categorize their results according to precision
of the specification, ranging from proofs of lemmas (where any type-correct proof
will do), to dependently typed definitions (whose types may capture functional
correctness, but could in some cases be less precise), to simply typed definitions
(whose specifications are relatively weak). Using their best model, Chakraborty
et al. report successfully synthesizing proofs for around 35% of lemmas, 41% of
dependently typed definitions, and 61% of simply typed goals.

Intent formalization & validation AI-assistance for authoring specifica-
tions is also an important area of work. For instance, researchers have begun
exploring how LLMs can be used to synthesize specifications from natural lan-
guage [71] and, more generally, use AI to help users formalize computational
intent [115]. Ensuring that AI formalizations are accurate reflections of a user’s
intent is an important concern, with researchers proposing various techniques to
judge the quality and consistency of the proposed formalization. For instance,
Sun et al.’s Clover [177] relies on AI to paraphrase the formalized intent back
to natural language as an added sanity check, and report promising empirical
results, a paradigm of AI-based validation referred to as using an “LLM as a
judge”.

Symbolic tools to validate AI-generated specifications Aside from AI-
based validation, we believe that coupling specification synthesis tools with sym-
bolic checkers and correct-by-construction code generation is a powerful way to
leverage the ability to AI models to summarize natural language and to translate
between representations in seemingly creative ways, while also minimizing trust
in AI code generators. For instance, 3DGen is a suite of AI agents developed by
Fakhoury et al. [73] to translate format descriptions in RFC documents to for-
mal specifications in 3D, an input language for EverParse. Using feedback from
symbolic tools (such as type checkers and test case generators), these agents
can automatically revise their output until they arrive at a 3D specification
that matches a user’s classification of a large number of symbolically gener-
ated test cases. From there, EverParse’s verified code generator takes over and
can produce efficient and safe C code, provably implementing the synthesized
specification.

54



In summary, the confluence of AI with proof assistants is an exciting and
very active new area of research. The difficulty of program proof has for long
been a limiting factor in its adoption and broadening access to program proof
is perhaps the most pressing problem the field faces. Generative AI offers a
new attack on this problem, which when coupled with steady improvements
in the underlying proof tools, could significantly reduce the expertise needed
to develop proofs of software. Initial steps in this direction are encouraging,
though much remains to be done before this vision is truly realized.

6 Conclusions

Project Everest brought together a large and diverse team of researchers to
work intensely together for half a decade on a challenging and practical prob-
lem: deploying provably correct and secure implementations of communication
software crucial to the Internet’s infrastructure. It was, we believe, unique for
its focus on co-developing a proof-oriented programming language with a suite
of applications. With a strong focus on performant, low-level code in C and
assembly, we prioritized producing components for deployment in the existing
software ecosystem, and in this, we succeeded in large measure.

The arc of the project evolved over its five-year course, growing in scope
in some regards to prioritize proofs of components that we did not originally
target. Conversely, there were parts of our initially proposed plan that we did
not complete, reflecting the realities of the shifting priorities and focus of a
large team spanning industry and academia, and of the shifting trends of the
computing industry itself. Many offshoots of Project Everest thrive today, some
building directly on the tools and software we produced, others learning from
our mistakes and exploring new approaches to program proofs at scale.

In summary, we believe ambitious, multi-year, collaborative efforts such as
ours challenge the community to both advance the state of the art and impact
the current practice of secure software development. We are grateful to our in-
stitutions and funding agencies for supporting long-range foundational research,
and encourage others to take on similar challenges.

A Contributors to Project Everest

We list below, in alphabetical order, 64 people who co-authored at least one
peer-reviewed paper that was published by the Project Everest team, as well as
some engineers who helped build core parts of our infrastructure.

Danel Ahman, Evmorfia-Iro Bartzia, Benjamin Beurdouche, Karthikeyan Bhar-
gavan, Barry Bond, Jay Bosamiya, Chris Brzuska, Omar Cardona, Tej Chajed,
Joonwon Choi, Christoph M. Wintersteiger, Eric Cornelissen, Antoine Delignat-
Lavaud, Victor Dumitrescu, Christoph Egger, Cédric Fournet, Aymeric Fromherz,
Nick Giannarakis, Sydney Gibson, Niklas Grimm, Arti Gupta, Chris Hawblitzel,
Cătălin Hriţcu, Samin Ishtiaq, Srikanth Kannepalli, Manos Kapritsos, Nadim

55



Kobeissi, Konrad Kohbrok, Markulf Kohlweiss, Konrad Kohbrok, Natalia Ku-
latova, Joseph Lallemand, K. Rustan M. Leino, Yao Li, Jacob R. Lorch, Matteo
Maffei, Kenji Maillard, Dmitry Malloy, Guido Mart́ınez, Denis Merigoux, Monal
Narasimhamurthy, Haobin Ni, Jianyang Pan, Zoe Paraskevopoulou, Bryan Parno,
Clément Pit-Claudel, Gordon Plotkin, Marina Polubelova, Jonathan Protzenko,
Itsaka Rakotonirina, Tahina Ramananandro, Ashay Rane, Aseem Rastogi, Sri-
nath Setty, Irina Spiridonova, Nikhil Swamy, Michael Tang, Laure Thompson,
Gustavo Varo, Juan Vazquez, Peng Wang, Santiago Zanella-Béguelin, Yi Zhou,
Jean Karim Zinzindohoue

We are also very grateful to the many open-source contributors to all of our
projects, and others who have continued to build on and improve the artifacts
that Project Everest created.

References

[1] curve25519-donna: Implementations of a fast Elliptic-curve Diffie-Hellman
primitive. https://github.com/agl/curve25519-donna.

[2] The Sodium Crypto Library (libsodium). https://github.com/

jedisct1/libsodium.

[3] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher. New results on
instruction cache attacks. In Proceedings of the International Conference
on Cryptographic Hardware and Embedded Systems (CHES), August 2010.

[4] Danel Ahman, Cédric Fournet, Cătălin Hriţcu, Kenji Maillard, Aseem
Rastogi, and Nikhil Swamy. Recalling a witness: Foundations and ap-
plications of monotonic state. Proc. ACM Program. Lang., 2(POPL),
December 2017.

[5] Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Mart́ınez, Gordon
Plotkin, Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra
monads for free. SIGPLAN Not., 52(1):515–529, January 2017.

[6] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and
Dawn Song. Towards a formal foundation of web security. In 2010 23rd
IEEE Computer Security Foundations Symposium, pages 290–304, 2010.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Ben-
jamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt
Schmidt, and Pierre-Yves Strub. Jasmin: High-assurance and high-speed
cryptography. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2017.

[8] Thorsten Altenkirch and Conor McBride. Generic programming within
dependently typed programming. In Proceedings of the IFIP TC2/WG2.1
Working Conference on Generic Programming, 2003.

56

https://github.com/agl/curve25519-donna
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium


[9] Daneshvar Amrollahi, Mathias Preiner, Aina Niemetz, Andrew Reynolds,
Moses Charikar, Cesare Tinelli, and Clark Barrett. Using normalization
to improve SMT solver stability. https://arxiv.org/abs/2410.22419,
2024.

[10] Cezar-Constantin Andrici, Ştefan Ciobâcă, Catalin Hritcu, Guido
Mart́ınez, Exequiel Rivas, Éric Tanter, and Théo Winterhalter. Securing
verified IO programs against unverified code in F⋆. Proc. ACM Program.
Lang., 8(POPL):2226–2259, 2024.

[11] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. On subnormal floating point and abnormal
timing. In Proceedings of the IEEE Symposium on Security and Privacy,
May 2015.

[12] Andrew W. Appel. Verification of a cryptographic primitive: SHA-256.
ACM Trans. Program. Lang. Syst., April 2015.

[13] Arvind Arasu, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Aymeric Fromherz, Kesha Hietala, Bryan Parno, and Ravi Ramamurthy.
FastVer2: A provably correct monitor for concurrent, key-value stores.
In Proceedings of the 12th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2023, page 30–46, New York, NY,
USA, 2023. Association for Computing Machinery.

[14] arm. NEON instructions. https://developer.arm.com/

documentation/dui0473/m/neon-instructions – Accessed March,
2025.

[15] Julian Bangert and Nickolai Zeldovich. Nail: A practical tool for parsing
and generating data formats. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 615–628, 2014.

[16] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas
Cremers, Kevin Liao, and Bryan Parno. SoK: Computer-aided cryptog-
raphy. In Proceedings of the IEEE Symposium on Security and Privacy,
May 2021.

[17] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican,
Emad Omara, and Katriel Cohn-Gordon. The Messaging Layer Security
(MLS) Protocol. RFC 9420, July 2023.

[18] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christo-
pher A. Wood. Hybrid Public Key Encryption. RFC 9180, February
2022.

[19] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella-
Béguelin. Computer-aided security proofs for the working cryptographer.
In Proceedings of IACR CRYPTO, 2011.

57

https://arxiv.org/abs/2410.22419
https://developer.arm.com/documentation/dui0473/m/neon-instructions
https://developer.arm.com/documentation/dui0473/m/neon-instructions


[20] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.
Gordon, and Sergio Maffeis. Refinement types for secure implementations.
ACM Trans. Program. Lang. Syst., 33(2):8:1–8:45, 2011.

[21] Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Ap-
pel. Verified correctness and security of OpenSSL HMAC. In Proceedings
of the USENIX Security Symposium, 2015.

[22] D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Pro-
ceedings of the IACR Conference on Practice and Theory of Public Key
Cryptography (PKC), 2006.

[23] Daniel J Bernstein. Cache-timing attacks on AES. https://cr.yp.to/

papers.html#cachetiming, 2005.

[24] Daniel J. Bernstein, Karthikeyan Bhargavan, Shivam Bhasin, Anupam
Chattopadhyay, Tee Kiah Chia, Matthias J. Kannwischer, Franziskus
Kiefer, Thales B. Paiva, Prasanna Ravi, and Goutam Tamvada. Kyber-
Slash: Exploiting secret-dependent division timings in Kyber implemen-
tations. IACR Cryptol. ePrint Arch., page 1049, 2024.

[25] Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram
Hosseyni, Ralf Küsters, Guido Schmitz, and Tim Würtele. DY*: A modu-
lar symbolic verification framework for executable cryptographic protocol
code. In IEEE European Symposium on Security and Privacy, EuroS&P
2021, Vienna, Austria, September 6-10, 2021, pages 523–542. IEEE, 2021.

[26] Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram
Hosseyni, Ralf Küsters, Guido Schmitz, and Tim Würtele. An in-depth
symbolic security analysis of the ACME standard. 2021.

[27] Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram
Hosseyni, Ralf Küsters, Guido Schmitz, and TimWürtele. A tutorial-style
introduction to DY*. In Protocols, Logic, and Strands: Essays Dedicated
to Joshua Guttman on the Occasion of His 66.66 Birthday., volume 13066
of LNCS, pages 77–97. Springer, 2021.

[28] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified
models and reference implementations for the tls 1.3 standard candidate.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 483–502,
2017.

[29] Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric
Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf
Kohlweiss, K. Rustan M. Leino, Jay R. Lorch, Kenji Maillard, Jianyang
Pan, Bryan Parno, Jonathan Protzenko, Tahina Ramananandro, Ashay
Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, San-
tiago Zanella Béguelin, and Jean Karim Zinzindohoue. Everest: Towards a
verified, drop-in replacement of HTTPS. In Benjamin S. Lerner, Rastislav

58

https://cr.yp.to/papers.html#cachetiming
https://cr.yp.to/papers.html#cachetiming


Bod́ık, and Shriram Krishnamurthi, editors, 2nd Summit on Advances in
Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA,
USA, volume 71 of LIPIcs, pages 1:1–1:12. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2017.

[30] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew
Green, Markulf Kohlweiss, and Santiago Zanella-Béguelin. Downgrade
resilience in key-exchange protocols. In IEEE Symposium on Security and
Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 506–525.
IEEE Computer Society, 2016.

[31] Karthikeyan Bhargavan, Maxime Buyse, Lucas Franceschino,
Lasse Letager Hansen, Franziskus Kiefer, Jonas Schneider-Bensch,
and Bas Spitters. hax: Verifying security-critical Rust software using
multiple provers. Cryptology ePrint Archive, Paper 2025/142, 2025.

[32] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, and Pierre-Yves Strub. Implementing TLS with verified cryp-
tographic security. In 2013 IEEE Symposium on Security and Privacy,
pages 445–459, 2013.

[33] Karthikeyan Bhargavan, Lucas Franceschino, Franziskus Kiefer, and
Goutam Tamvada. Verifying libcrux’s ml-kem. https://cryspen.com/

post/ml-kem-verification/, 2024.

[34] Henk Birkholz, Christoph Vigano, and Carsten Bormann. Concise Data
Definition Language (CDDL): A Notational Convention to Express Con-
cise Binary Object Representation (CBOR) and JSON Data Structures.
IETF RFC 8610, June 2019.

[35] Bruno Blanchet. Automatic verification of security protocols in the sym-
bolic model: The verifier ProVerif. In Alessandro Aldini, Javier López,
and Fabio Martinelli, editors, Foundations of Security Analysis and De-
sign VII - FOSAD 2012/2013 Tutorial Lectures, volume 8604 of Lecture
Notes in Computer Science, pages 54–87. Springer, 2013.

[36] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson.
Extending sledgehammer with SMT solvers. In Nikolaj S. Bjørner and
Viorica Sofronie-Stokkermans, editors, Automated Deduction - CADE-
23 - 23rd International Conference on Automated Deduction, Wroclaw,
Poland, July 31 - August 5, 2011. Proceedings, volume 6803 of Lecture
Notes in Computer Science, pages 116–130. Springer, 2011.

[37] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Ja-
cob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thomp-
son. Vale: Verifying high-performance cryptographic assembly code. In
Proceedings of the USENIX Security Symposium, August 2017.

59

https://cryspen.com/post/ml-kem-verification/
https://cryspen.com/post/ml-kem-verification/


[38] Carsten Bormann and Paul E. Hoffman. Concise Binary Object Repre-
sentation (CBOR). IETF RFC 8949, December 2020.

[39] Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Haw-
blitzel. Verified transformations and Hoare logic: Beautiful proofs for
ugly assembly language. In In Proceedings of the Conference on Verified
Software: Theories, Tools, and Experiments (VSTTE), July 2020.

[40] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. Provably-safe multi-
lingual software sandboxing using WebAssembly. In Proceedings of the
USENIX Security Symposium, August 2022.

[41] David Brumley and Dan Boneh. Remote timing attacks are practical. In
Proceedings of the USENIX Security Symposium, August 2003.

[42] Chris Brzuska. Key-schedule security for the TLS 1.3 standard. YouTube,
2022.

[43] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok. Security analysis
of the MLS key derivation. In 43rd IEEE Symposium on Security and
Privacy (SP), pages 2535–2553. IEEE, 2022.

[44] Chris Brzuska, Antoine Delignat-Lavaud, Christoph Egger, Cédric Four-
net, Konrad Kohbrok, and Markulf Kohlweiss. Key-schedule security for
the TLS 1.3 standard. In Shweta Agrawal and Dongdai Lin, editors, Ad-
vances in Cryptology - ASIACRYPT 2022 - 28th International Conference
on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5-9, 2022, Proceedings, Part I, volume 13791
of Lecture Notes in Computer Science, pages 621–650. Springer, 2022.

[45] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Ko-
hbrok, and Markulf Kohlweiss. State separation for code-based game-
playing proofs. In Thomas Peyrin and Steven D. Galbraith, editors, Ad-
vances in Cryptology - ASIACRYPT 2018 - 24th International Conference
on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III, vol-
ume 11274 of Lecture Notes in Computer Science, pages 222–249. Springer,
2018.

[46] Chris Brzuska, Christoph Egger, and Jan Winkelmann. SSBee. https:

//github.com/sspverif/sspverif/, 2025.

[47] Chris Brzuska and Sabine Oechsner. A state-separating proof for Yao’s
garbling scheme. In 36th IEEE Computer Security Foundations Sympo-
sium (CSF), pages 137–152. IEEE, 2023.

[48] Yi Cai, Pratap Singh, Zhengyao Lin, Jay Bosamiya, Joshua Gancher,
Milijana Surbatovich, and Bryan Parno. Vest: Verified, secure, high-
performance parsing and serialization for Rust. In Proceedings of the
USENIX Security Symposium, August 2025.

60

https://github.com/sspverif/sspverif/
https://github.com/sspverif/sspverif/


[49] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. Content security
problems? Evaluating the effectiveness of content security policy in the
wild. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, page 1365–1375, New York, NY,
USA, 2016. Association for Computing Machinery.

[50] Saikat Chakraborty, Gabriel Ebner, Siddharth Bhat, Sarah Fakhoury,
Sakina Fatima, Shuvendu Lahiri, and Nikhil Swamy. Towards neural syn-
thesis for smt-assisted proof-oriented programming, 2024.

[51] Saikat Chakraborty, Shuvendu K Lahiri, Sarah Fakhoury, Madanlal Musu-
vathi, Akash Lal, Aseem Rastogi, Aditya Senthilnathan, Rahul Sharma,
and Nikhil Swamy. Ranking llm-generated loop invariants for program
verification. arXiv preprint arXiv:2310.09342, 2023.

[52] Xiangdong Chen, Zhaofeng Li, Lukas Mesicek, Vikram Narayanan, and
Anton Burtsev. Atmosphere: Towards practical verified kernels in Rust. In
Proceedings of the Workshop on Kernel Isolation, Safety and Verification
(KISV), 2023.

[53] Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-
Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. Verifying
Curve25519 software. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2014.

[54] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Rfc 5280: Internet x.509 public key infrastructure certificate and certifi-
cate revocation list (crl) profile, 2008.

[55] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile
Software Development. Prentice-Hall, Inc., USA, 2004.

[56] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of TLS 1.3. In Bhavani
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pages 1773–1788. ACM, 2017.

[57] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Auto-
mated analysis and verification of TLS 1.3: 0-rtt, resumption and delayed
authentication. In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016, pages 470–485. IEEE Computer
Society, 2016.

[58] DARPA. Translating All C to Rust (TRACTOR). https://www.darpa.
mil/program/translating-all-c-to-rust, September 2024.

61

https://www.darpa.mil/program/translating-all-c-to-rust
https://www.darpa.mil/program/translating-all-c-to-rust


[59] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and
Jakob von Raumer. The Lean theorem prover. In Proc. of the Conference
on Automated Deduction (CADE), August 2015.

[60] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[61] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan
Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago Zanella Béguelin,
Karthikeyan Bhargavan, Jianyang Pan, and Jean Karim Zinzindohoue.
Implementing and proving the TLS 1.3 record layer. In 2017 IEEE Sym-
posium on Security and Privacy, SP 2017, San Jose, CA, USA, May
22-26, 2017, pages 463–482. IEEE Computer Society, 2017.

[62] Antoine Delignat-Lavaud, Cédric Fournet, Bryan Parno, Jonathan
Protzenko, Tahina Ramananandro, Jay Bosamiya, Joseph Lallemand, It-
saka Rakotonirina, and Yi Zhou. A security model and fully verified im-
plementation for the IETF QUIC record layer. In 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021, pages 1162–1178. IEEE, 2021.

[63] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot: A
foundry for the deductive verication of Rust programs. In Proceedings
of the International Conference on Formal Engineering Methods, October
2022.

[64] Robert Dockins, Adam Foltzer, Joe Hendrix, Brian Huffman, Dylan Mc-
Namee, and Aaron Tomb. Constructing semantic models of programs
with the software analysis workbench. In Conference on Verified Software
- Theories, Tools, and Experiments (VSTTE), 2016.

[65] Jason A. Donenfeld. Wireguard: Next generation kernel network tunnel.
https://www.wireguard.com/, January 2017.

[66] Jason A. Donenfeld. new 25519 measurements of formally verified imple-
mentations. http://moderncrypto.org/mail-archive/curves/2018/

000972.html, February 2018.

[67] Nir Drucker and Shay Gueron. Selfie: reflections on TLS 1.3 with PSK.
J. Cryptol., 34(3):27, 2021.

[68] François Dupressoir, Konrad Kohbrok, and Sabine Oechsner. Bringing
state-separating proofs to easycrypt A security proof for cryptobox. In
35th IEEE Computer Security Foundations Symposium, (CSF), pages
227–242. IEEE, 2022.

62

https://www.wireguard.com/
http://moderncrypto.org/mail-archive/curves/2018/000972.html
http://moderncrypto.org/mail-archive/curves/2018/000972.html


[69] Gabriel Ebner, Guido Mart́ınez, Aseem Rastogi, Thibault Dardinier,
Megan Frisella, Tahina Ramananandro, and Nikhil Swamy. PulseCore:
An impredicative concurrent separation logic for dependently typed pro-
grams. In PLDI ’25: 46rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Seoul, Korea, 2025.
ACM, 2025.

[70] Christoph Egger. On Abstraction and Modularization in Protocol Analy-
sis. Doctoral thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU), 2023.

[71] Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K.
Lahiri. Can large language models transform natural language intent into
formal method postconditions? Proc. ACM Softw. Eng., 1(FSE), July
2024.

[72] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple
high-level code for cryptographic arithmetic - with proofs, without com-
promises. In Proceedings of the IEEE Symposium on Security and Privacy,
2019.

[73] Sarah Fakhoury, Markus Kuppe, Shuvendu K. Lahiri, Tahina Ra-
mananandro, and Nikhil Swamy. 3dgen: Ai-assisted generation of prov-
ably correct binary format parsers, 2024.

[74] N. J. Al Fardan and K. G. Paterson. Lucky Thirteen: Breaking the TLS
and DTLS record protocols. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2013.

[75] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. Komodo: Using verification to disentangle secure-enclave hard-
ware from software. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), October 2017.

[76] Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-
proof generation and repair with large language models. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1229–1241,
2023.

[77] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-
based cryptographic verification. In Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security, CCS ’11, page 341–350,
New York, NY, USA, 2011. Association for Computing Machinery.

[78] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno,
Aseem Rastogi, and Nikhil Swamy. A verified, efficient embedding of
a verifiable assembly language. Proc. ACM Program. Lang., 3(POPL),
January 2019.

63



[79] Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno,
Aseem Rastogi, and Nikhil Swamy. A verified, efficient embedding of a
verifiable assembly language. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL), January 2019.

[80] Aymeric Fromherz and Jonathan Protzenko. Compiling C to safe Rust,
formalized, 2024.

[81] Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido
Mart́ınez, Denis Merigoux, and Tahina Ramananandro. Steel: proof-
oriented programming in a dependently typed concurrent separation logic.
Proc. ACM Program. Lang., 5(ICFP), August 2021.

[82] Yoshihiko Futamura. Partial evaluation of computation process-an ap-
proach to a compiler-compiler. Systems, Computers, Controls, 2(5):45–50,
1971.

[83] Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and
Derek Dreyer. RefinedRust: A type system for high-assurance verification
of Rust.

[84] Joshua Gancher, Sydney Gibson, Pratap Singh, Samvid Dharanikota, and
Bryan Parno. Owl: Compositional verification of security protocols via
an information-flow type system. In Proceedings fo the IEEE Symposium
on Security and Privacy, 2023.

[85] Google. Announcing KataOS and Sparrow. https://opensource.

googleblog.com/2022/10/announcing-kataos-and-sparrow.html,
October 2022.

[86] Niklas Grimm, Kenji Maillard, Cédric Fournet, Cătălin Hriţcu, Mat-
teo Maffei, Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi,
Nikhil Swamy, and Santiago Zanella-Béguelin. A monadic framework for
relational verification: Applied to information security, program equiv-
alence, and optimizations. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018,
page 130–145, New York, NY, USA, 2018. Association for Computing
Machinery.

[87] Samuel Gruetter, Viktor Fukala, and Adam Chlipala. Live verification in
an interactive proof assistant. Proc. ACM Program. Lang., 8(PLDI), June
2024.

[88] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung
Kim, Vilhelm Sjöberg, and David Costanzo. CertiKOS: An extensible
architecture for building certified concurrent OS kernels. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16),
pages 653–669, Savannah, GA, November 2016. USENIX Association.

64

https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html


[89] Shay Gueron. Intel® Advanced Encryption Standard (AES) New In-
structions Set. https://software.intel.com/sites/default/files/

article/165683/aes-wp-2012-09-22-v01.pdf, September 2012.

[90] Sean Gulley, Vinodh Gopal, Kirk Yap, Wajdi Feghali, Jim
Guilford, and Gil Wolrich. Intel® SHA Extensions. https:

//software.intel.com/sites/default/files/article/402097/

intel-sha-extensions-white-paper.pdf, July 2013.

[91] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien.
Bringing the Web up to speed with WebAssembly. SIGPLAN Not.,
52(6):185–200, June 2017.

[92] Philipp G. Haselwarter, Benjamin Salling Hvass, Lasse Letager Hansen,
Théo Winterhalter, Cătălin Hriţcu, and Bas Spitters. The last yard: Foun-
dational end-to-end verification of high-speed cryptography. In Proceed-
ings of the 13th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2024, page 30–44, New York, NY, USA, 2024.
Association for Computing Machinery.

[93] Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Win-
terhalter, Carmine Abate, Nikolaj Sidorenco, Catalin Hritcu, Kenji Mail-
lard, and Bas Spitters. SSProve: A foundational framework for mod-
ular cryptographic proofs in coq. ACM Trans. Program. Lang. Syst.,
45(3):15:1–15:61, 2023.

[94] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan
Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. IronFleet: Prov-
ing practical distributed systems correct. In Proceedings of the ACM Sym-
posium on Operating Systems Principles (SOSP), October 2015.

[95] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan
Parno, Danfeng Zhang, and Brian Zill. Ironclad Apps: End-to-end security
via automated full-system verification. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
October 2014.

[96] Son Ho, Aymeric Fromherz, and Jonathan Protzenko. Modularity, code
specialization, and zero-cost abstractions for program verification. Proc.
ACM Program. Lang., 7(ICFP), August 2023.

[97] Son Ho and Jonathan Protzenko. Aeneas: Rust verification by func-
tional translation. Proceedings of the ACM on Programming Languages,
6(ICFP):711–741, 2022.

[98] Son Ho, Jonathan Protzenko, Abhishek Bichhawat, and Karthikeyan
Bhargavan. Noise*: A library of verified high-performance secure chan-
nel protocol implementations. In 43rd IEEE Symposium on Security and

65

https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf
https://software.intel.com/sites/default/files/article/402097/intel-sha-extensions-white-paper.pdf


Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages 107–
124. IEEE, 2022.

[99] Jana Hofmann, Cédric Fournet, Boris Köpf, and Stavros Volos. Gaus-
sian elimination of side-channels: Linear algebra for memory coloring.
In Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, CCS ’24, page 2799–2813, New York, NY,
USA, 2024. Association for Computing Machinery.

[100] A. Hunt and D. Thomas. Software archaeology. IEEE Software, 19(2):20–
22, 2002.

[101] Graham Hutton. Parsing using combinators. In Proceedings of the 1989
Glasgow Workshop on Functional Programming, page 353–370, Berlin,
Heidelberg, 1989. Springer-Verlag.

[102] Intel. New instructions supporting large integer arithmetic on intel archi-
tecture processors, 2014.

[103] ITU-T Study Group 17. X.680 : Information technology - Abstract Syntax
Notation One (ASN.1): Specification of basic notation. ITU Recommen-
dation X.680, 2021.

[104] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings of
the General Track of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’02, page 275–288, USA, 2002. USENIX Association.

[105] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular foun-
dation for higher-order concurrent separation logic. J. Funct. Program.,
28:e20, 2018.

[106] Ben Kallus, Prashant Anantharaman, Michael Locasto, and Sean W.
Smith. The HTTP garden: Discovering parsing vulnerabilities in
HTTP/1.1 implementations by differential fuzzing of request streams,
2024.

[107] Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis
Deligiannis, Shuvendu K Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy,
and Rahul Sharma. Finding inductive loop invariants using large language
models. arXiv preprint arXiv:2311.07948, 2023.

[108] Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies
and sharing without restrictions. In Proceedings of the 14th International
Conference on Formal Methods, FM’06, pages 268–283, Berlin, Heidel-
berg, 2006. Springer-Verlag.

66



[109] Franziskus Kiefer and Karthikeyan Bhargavan. Formally verified post-
quantum cryptography. https://cryspen.com/post/fospqc/, August
2024.

[110] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive formal verifi-
cation of an OS microkernel. ACM Transactions on Computer Systems,
32(1):2:1–2:70, February 2014.

[111] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 1–19, 2019.

[112] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Proceedings of the International Cryp-
tology Conference (CRYPTO), 1996.

[113] Konrad Kohbrok. State-Separating Proofs and Their Applications. Doc-
toral thesis, Aalto University School of Science, 2023.

[114] Matthew Kolosick, Basavesh Ammanaghatta Shivakumar, Sunjay Cauligi,
Marco Patrignani, Marco Vassena, Ranjit Jhala, and Deian Stefan. Ro-
bust constant-time cryptography. In Proceedings of the ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation (PLDI), 2025.

[115] Shuvendu K. Lahiri. AI-assisted user intent formalization for programs:
Problem and applications (invited talk). In Bram Adams, Thomas Zim-
mermann, Ipek Ozkaya, Dayi Lin, and Jie M. Zhang, editors, Proceedings
of the 1st ACM International Conference on AI-Powered Software, AIware
2024, Porto de Galinhas, Brazil, July 15-16, 2024. ACM, 2024.

[116] Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Ro-
driguez, Amaury Hayat, Thibaut Lavril, Gabriel Ebner, and Xavier Mar-
tinet. Hypertree proof search for neural theorem proving. Advances in
Neural Information Processing Systems, 35:26337–26349, 2022.

[117] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[118] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, and J. Iyengar. The QUIC transport
protocol: Design and internet-scale deployment. In SIG on Data Commu-
nication, pages 183–196. ACM, 2017.

[119] Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee
Cho, Hayley LeBlanc, Pranav Srinivasan, Reto Achermann, Tej Chajed,

67

https://cryspen.com/post/fospqc/


Chris Hawblitzel, Jon Howell, Jay Lorch, Oded Padon, and Bryan Parno.
Verus: A practical foundation for systems verification. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP), November
2024.

[120] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha
Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and Chris Hawblitzel.
Verus: Verifying Rust programs using linear ghost types. In Proceedings
of the ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), October 2023.

[121] Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. Flux: Liq-
uid types for Rust. Proceedings of the ACM on Programming Languages,
7(PLDI), June 2023.

[122] K. R. M. Leino and Clément Pit-Claudel. Trigger selection strategies
to stabilize program verifiers. In Swarat Chaudhuri and Azadeh Farzan,
editors, Proceedings of the International Conference on Computer Aided
Verification (CAV), 2016.

[123] K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In Proceedings of the 16th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR’10, pages
348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

[124] K. Rustan M. Leino and Nadia Polikarpova. Verified calculations. In
Proceedings of the Conference on Verified Software: Theories, Tools, Ex-
periments (VSTTE), 2014.

[125] Xavier Leroy. Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant. In POPL 2006: 33rd symposium
Principles of Programming Languages, pages 42–54. ACM, 2006.

[126] Pierre Letouzey. Extraction in Coq: An overview. In Proceedings of the 4th
Conference on Computability in Europe: Logic and Theory of Algorithms,
CiE ’08, page 359–369, Berlin, Heidelberg, 2008. Springer-Verlag.

[127] Kirby Linvill, Gowtham Kaki, and Eric Wustrow. Verifying indistin-
guishability of privacy-preserving protocols. Proc. ACM Program. Lang.,
7(OOPSLA2), October 2023.

[128] Chang Liu, Xiwei Wu, Yuan Feng, Qinxiang Cao, and Junchi Yan. To-
wards general loop invariant generation via coordinating symbolic execu-
tion and large language models. arXiv preprint arXiv:2311.10483, 2023.

[129] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. A survey
of microarchitectural side-channel vulnerabilities, attacks, and defenses in
cryptography. ACM Comput. Surv., 54(6), July 2021.

68



[130] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Mart́ınez, Cătălin
Hriţcu, Exequiel Rivas, and Éric Tanter. Dijkstra monads for all. Proc.
ACM Program. Lang., 3(ICFP), July 2019.

[131] Kenji Maillard, Catalin Hritcu, Exequiel Rivas, and Antoine Van Muylder.
The next 700 relational program logics. Proc. ACM Program. Lang.,
4(POPL):4:1–4:33, 2020.

[132] Guido Mart́ınez, Danel Ahman, Victor Dumitrescu, Nick Gian-
narakis, Chris Hawblitzel, Catalin Hritcu, Monal Narasimhamurthy, Zoe
Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina Ra-
mananandro, Aseem Rastogi, and Nikhil Swamy. Meta-F⋆: Proof au-
tomation with SMT, tactics, and metaprograms. In Lúıs Caires, editor,
Programming Languages and Systems - 28th European Symposium on Pro-
gramming, ESOP 2019, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019, Prague, Czech Re-
public, April 6-11, 2019, Proceedings, volume 11423 of Lecture Notes in
Computer Science, pages 30–59. Springer, 2019.

[133] Lúcás C. Meier. State separable proofs for the curious cryp-
tographer. Blogpost: https://cronokirby.com/posts/2022/05/

state-separable-proofs-for-the-curious-cryptographer/, 2022.

[134] Microsoft. Rust for Windows, and the Windows crate. https:

//learn.microsoft.com/en-us/windows/dev-environment/rust/

rust-for-windows, August 2023.

[135] Shane Miller and Carl Lerche. Sustainability with Rust. https://aws.

amazon.com/blogs/opensource/sustainability-with-rust/, Febru-
ary 2022.

[136] Mozilla. Measurement dashboard. https://mzl.la/2ug9YCH, July 2018.

[137] Mozilla. Mozilla welcomes the Rust Foundation. https://blog.mozilla.
org/en/mozilla/mozilla-welcomes-the-rust-foundation/, Febru-
ary 2021.

[138] National Institute of Standards and Technology. Secure Hash Standard
(SHS), 2012. FIPS PUB 180-4.

[139] Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet, Tahina Ra-
mananandro, and Nikhil Swamy. ASN1*: Provably correct, non-malleable
parsing for ASN.1 DER. In Robbert Krebbers, Dmitriy Traytel, Brigitte
Pientka, and Steve Zdancewic, editors, Proceedings of the 12th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, CPP
2023, Boston, MA, USA, January 16-17, 2023, pages 275–289. ACM,
2023.

[140] NIST. Recommendation for block cipher modes of operation: Methods
and techniques. NIST Special Publication 800-38A, November.

69

https://cronokirby.com/posts/2022/05/state-separable-proofs-for-the-curious-cryptographer/
https://cronokirby.com/posts/2022/05/state-separable-proofs-for-the-curious-cryptographer/
https://learn.microsoft.com/en-us/windows/dev-environment/rust/rust-for-windows
https://learn.microsoft.com/en-us/windows/dev-environment/rust/rust-for-windows
https://learn.microsoft.com/en-us/windows/dev-environment/rust/rust-for-windows
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://mzl.la/2ug9YCH
https://blog.mozilla.org/en/mozilla/mozilla-welcomes-the-rust-foundation/
https://blog.mozilla.org/en/mozilla/mozilla-welcomes-the-rust-foundation/


[141] NIST. Announcing the Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication 197, November 2001.

[142] NIST. Recommendation for block cipher modes of operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-
38D, November 2007.

[143] Peter W. O’Hearn. Resources, concurrency and local reasoning. In
Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Con-
currency Theory, pages 49–67, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

[144] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein. Re-
vizor: Testing black-box CPUs against speculation contracts. In Proceed-
ings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’22, page
226–239, New York, NY, USA, 2022. Association for Computing Machin-
ery.

[145] Thomaz Oliveira, Julio López, Hüseyin Hışıl, Armando Faz-Hernández,
and Francisco Rodŕıguez-Henŕıquez. How to (pre-)compute a ladder: Im-
proving the performance of X25519 and X448. In Proceedings of Selected
Areas in Cryptography (SAC), August 2017.

[146] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. Asleep at the keyboard? Assessing the security
of GitHub Copilot’s code contributions. Commun. ACM, 68(2):96–105,
January 2025.

[147] Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng
Yin. Can large language models reason about program invariants? In
Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

[148] Colin Percival. Cache missing for fun and profit. https://papers.

freebsd.org/2005/cperciva-cache_missing/, 2005.

[149] Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Ben-
jamin Beurdouche, Aymeric Fromherz, Natalia Kulatova, and Santiago
Zanella-Béguelin. HACL×N: Verified generic SIMD crypto (for all your
favorite platforms). In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), October 2020.

[150] Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang.
Verifying Arithmetic Assembly Programs in Cryptographic Primitives. In
Conference on Concurrency Theory (CONCUR), 2018.

[151] François Pottier. Visitors unchained. Proceedings of the ACM on Pro-
gramming Languages, 1(ICFP):1–28, 2017.

70

https://papers.freebsd.org/2005/cperciva-cache_missing/
https://papers.freebsd.org/2005/cperciva-cache_missing/


[152] Rachel Potvin and Josh Levenberg. Why Google stores billions of lines of
code in a single repository. Commun. ACM, 59(7):78–87, June 2016.

[153] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel,
Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joon-
won Choi, Antoine Delignat-Lavaud, Cédric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy, Christoph Win-
tersteiger, and Santiago Zanella-Beguelin. EverCrypt: A fast, verified,
cross-platform cryptographic provider. In Proceedings of the IEEE Sym-
posium on Security and Privacy (Oakland), May 2020.

[154] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine
Delignat-Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Four-
net, and Nikhil Swamy. Verified low-level programming embedded in f*.
Proc. ACM Program. Lang., 1(ICFP), August 2017.

[155] Liam Proven. Linux 6.1: Rust to hit mainline kernel. https://www.

theregister.com/2022/10/05/rust_kernel_pull_request_pulled/,
October 2022.

[156] Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble.
Towards AI-assisted synthesis of verified Dafny methods. arXiv e-prints,
pages arXiv–2402, 2024.

[157] Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil
Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko. EverParse:
Verified secure zero-copy parsers for authenticated message formats. In
Nadia Heninger and Patrick Traynor, editors, 28th USENIX Security Sym-
posium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16,
2019, pages 1465–1482. USENIX Association, 2019.

[158] Tahina Ramananandro, Gabriel Ebner, Guido Mart́ınez, and Nikhil
Swamy. Secure parsing and serializing with separation logic, applied to
CBOR, CDDL, and COSE. https://arxiv.org/abs/2505.17335, May
2025.

[159] Tahina Ramananandro, Aseem Rastogi, and Nikhil Swamy. Ever-
Parse: Hardening critical attack surfaces with formally proven mes-
sage parsers. https://www.microsoft.com/en-us/research/blog/

everparse-hardening-critical-attack-surfaces-with-formally-proven-message-parsers/,
May 2021.

[160] Aseem Rastogi, Guido Mart́ınez, Aymeric Fromherz, Tahina Ra-
mananandro, and Nikhil Swamy. Programming and proving with
indexed effects. https://fstar-lang.org/papers/indexedeffects/

indexedeffects.pdf, July 2020.

71

https://www.theregister.com/2022/10/05/rust_kernel_pull_request_pulled/
https://www.theregister.com/2022/10/05/rust_kernel_pull_request_pulled/
https://arxiv.org/abs/2505.17335
https://www.microsoft.com/en-us/research/blog/everparse-hardening-critical-attack-surfaces-with-formally-proven-message-parsers/
https://www.microsoft.com/en-us/research/blog/everparse-hardening-critical-attack-surfaces-with-formally-proven-message-parsers/
https://fstar-lang.org/papers/indexedeffects/indexedeffects.pdf
https://fstar-lang.org/papers/indexedeffects/indexedeffects.pdf


[161] Antonin Reitz, Aymeric Fromherz, and Jonathan Protzenko. StarMalloc:
Verifying a modern, hardened memory allocator. Proc. ACM Program.
Lang., 8(OOPSLA2), October 2024.

[162] Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang,
Wanjia Zhao, Liyue Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu,
Zhibin Gou, Shirong Ma, Hongxuan Tang, Yuxuan Liu, Wenjun Gao,
Daya Guo, and Chong Ruan. DeepSeek-Prover-V2: Advancing formal
mathematical reasoning via reinforcement learning for subgoal decompo-
sition, 2025.

[163] E. Rescorla. RFC 8446: The transport layer security (TLS) protocol
version 1.3, 2018.

[164] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood.
TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-24, Internet
Engineering Task Force, March 2025. Work in Progress.

[165] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science, LICS ’02, pages 55–74, Washington, DC, USA, 2002.
IEEE Computer Society.

[166] Talia Ringer. Proof Repair. PhD thesis, University of Washington, USA,
2021.

[167] Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner.
REPLica: REPL instrumentation for Coq analysis. In Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, page 99–113, New York, NY, USA, 2020. Association
for Computing Machinery.

[168] Amos Robinson and Alex Potanin. Pipit on the post: Proving pre- and
post-conditions of reactive systems. In Jonathan Aldrich and Guido Sal-
vaneschi, editors, 38th European Conference on Object-Oriented Program-
ming, ECOOP 2024, September 16-20, 2024, Vienna, Austria, volume
313 of LIPIcs, pages 34:1–34:28. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2024.

[169] Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner.
Generating correctness proofs with neural networks. In Proceedings of the
4th ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, pages 1–10, 2020.

[170] Jim Schaad. CBOR Object Signing and Encryption (COSE): Structures
and Process. RFC 9052, August 2022.

[171] Sheera Shamsu, Dipesh Kafle, Dhruv Maroo, Kartik Nagar, Karthikeyan
Bhargavan, and KC Sivaramakrishnan. A mechanically verified garbage
collector for OCaml. Journal of Automated Reasoning (JAR), 2025.

72



[172] Lucas Silver and Steve Zdancewic. Dijkstra monads forever: Termination-
sensitive specifications for interaction trees. Proc. ACM Program. Lang.,
5(POPL), January 2021.

[173] Pratap Singh, Joshua Gancher, and Bryan Parno. OwlC: Compiling secu-
rity protocols to verified, secure, high-performance libraries. In Proceed-
ings of the USENIX Security Symposium, August 2025.

[174] Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand,
Jakob Botsch Nielsen, Nicolas Tabareau, and Théo Winterhalter.
Correct and Complete Type Checking and Certified Erasure for Coq, in
Coq. Journal of the ACM (JACM), pages 1–76, November 2024.

[175] Bas Spitters, Karthikeyan Bhargavan, Franziskus Kiefer, and Lucas
Franceschino. Formal security and functional verification of cryptographic
protocol implementations in Rust. To be published on eprint.iacr.org,
March 2025.

[176] Pierre-Yves Strub, Nikhil Swamy, Cédric Fournet, and Juan Chen. Self-
certification: Bootstrapping certified typecheckers in F⋆ with Coq. In
Symposium on Principles of Programming Languages, POPL, pages 571–
584. ACM, 2012.

[177] Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover:
Closed-loop verifiable code generation. arXiv preprint arXiv:2310.17807,
2023.

[178] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma, Tej Chajed, Jon
Howell, Andrea Lattuada, Oded Padon, Lalith Suresh, Adriana Szekeres,
and Tianyin Xu. Anvil: Verifying liveness of cluster management con-
trollers. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), July 2024.

[179] Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful autho-
rization and information flow policies in Fine. In In Proceedings of the
European Symposium on Programming (ESOP), 2010.

[180] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,
Karthikeyan Bhargavan, and Jean Yang. Secure distributed programming
with value-dependent types. SIGPLAN Not., 46(9):266–278, September
2011.

[181] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor
Jim. Safe manual memory management in Cyclone. Sci. Comput. Pro-
gram., 62(2):122–144, October 2006.

[182] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and

73



Santiago Zanella-Béguelin. Dependent types and multi-monadic effects
in F⋆. SIGPLAN Not., 51(1):256–270, January 2016.

[183] Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiridonova,
Haobin Ni, Dmitry Malloy, Juan Vazquez, Michael Tang, Omar Cardona,
and Arti Gupta. Hardening attack surfaces with formally proven binary
format parsers. In Ranjit Jhala and Isil Dillig, editors, PLDI ’22: 43rd
ACM SIGPLAN International Conference on Programming Language De-
sign and Implementation, San Diego, CA, USA, June 13 - 17, 2022, pages
31–45. ACM, 2022.

[184] Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel
Ahman, and Guido Mart́ınez. SteelCore: An extensible concurrent separa-
tion logic for effectful dependently typed programs. Proc. ACM Program.
Lang., 4(ICFP), August 2020.

[185] Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Ben-
jamin Livshits. Verifying higher-order programs with the Dijkstra monad.
In Proceedings of the 34th annual ACM SIGPLAN conference on Program-
ming Language Design and Implementation, PLDI ’13, pages 387–398,
2013.

[186] Zhe Tao, Aseem Rastogi, Naman Gupta, Kapil Vaswani, and Aditya V.
Thakur. DICE*: A formally verified implementation of DICE measured
boot. In 30th USENIX Security Symposium (USENIX Security 21), pages
1091–1107. USENIX Association, August 2021.

[187] Amitayush Thakur, Yeming Wen, and Swarat Chaudhuri. A
language-agent approach to formal theorem-proving. arXiv preprint
arXiv:2310.04353, 2023.

[188] Aaron Tomb. Automated verification of real-world cryptographic imple-
mentations. IEEE Security Privacy Magazine, 14(6), November 2016.

[189] Trusted Computing Group. Dice protection environment, version 1.0,
revision 0.6. https://trustedcomputinggroup.org/wp-content/

uploads/TCG-DICE-Protection-Environment-Specification_

14february2023-1.pdf, 2023.

[190] Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verifica-
tion of algebraic properties on low-level mathematical constructs in cryp-
tographic programs. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2017.

[191] Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and
Adrian Sampson. Verifying dynamic trait objects in Rust. In Proceed-
ings of the IEEE/ACM International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP).

74

https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf


[192] Niki Vazou and Michael Greenberg. How to safely use extensionality in
Liquid Haskell. arXiv cs.PL 2103.02177, https://arxiv.org/abs/2103.
02177, 2022.

[193] Stavros Volos, Cédric Fournet, Jana Hofmann, Boris Köpf, and Oleksii
Oleksenko. Principled microarchitectural isolation on cloud CPUs. In
Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie, editors,
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS 2024, Salt Lake City, UT, USA, October
14-18, 2024, pages 183–197. ACM, 2024.

[194] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’89, page 60–76, New York, NY,
USA, 1989. Association for Computing Machinery.

[195] Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and
Karthikeyan Bhargavan. TreeSync: Authenticated group management
for Messaging Layer Security. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 1217–1233, 2023.

[196] Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan.
Comparse: Provably secure formats for cryptographic protocols. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’23, page 564–578, New York, NY, USA, 2023.
Association for Computing Machinery.

[197] Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan.
TreeKEM: A modular machine-checked symbolic security analysis of group
key agreement in Messaging Layer Security. IACR Cryptol. ePrint Arch.,
page 410, 2025.

[198] Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu,
Marco Dos Santos, Flood Sung, Marina Vinyes, Zhenzhe Ying, Zekai
Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bailey, Chendong Song,
Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu, Ji-
awei Liu, Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt,
Lewis Tunstall, Luigi Pagani, Moreira Machado, Pauline Bourigault, Ran
Wang, Stanislas Polu, Thibaut Barroyer, Wen-Ding Li, Yazhe Niu, Yann
Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang, Zhilin Yang, Zhengy-
ing Liu, and Jia Li. Kimina-prover preview: Towards large formal reason-
ing models with reinforcement learning, 2025.

[199] White House Office of the National Cyber Director. Back
to the building blocks: A path toward secure and measur-
able software. https://bidenwhitehouse.archives.gov/wp-content/

uploads/2024/02/Final-ONCD-Technical-Report.pdf, February 2024.

75

https://arxiv.org/abs/2103.02177
https://arxiv.org/abs/2103.02177
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://bidenwhitehouse.archives.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf


[200] Fabian Wolff, Aurel B́ılý, Christoph Matheja, Peter Müller, and Alexan-
der J. Summers. Modular specification and verification of closures in
Rust. Proceedings of the ACM on Programming Languages, 5(OOPSLA),
October 2021.

[201] Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting
with proof assistants. In International Conference on Machine Learning,
pages 6984–6994. PMLR, 2019.

[202] Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song,
Shixing Yu, Saad Godil, Ryan J Prenger, and Animashree Anandkumar.
LeanDojo: Theorem proving with retrieval-augmented language models.
Advances in Neural Information Processing Systems, 36, 2024.

[203] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A timing
attack on OpenSSL constant time RSA. In Proceedings of the International
Conference on Cryptographic Hardware and Embedded Systems (CHES),
August 2010.

[204] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer,
Adam Petcher, and Andrew W. Appel. Verified correctness and security
of mbedTLS HMAC-DRBG. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2017.

[205] Miao Yu, Virgil Gligor, and Limin Jia. An I/O separation model for
formal verification of kernel implementations. In Proceedings of the IEEE
Symposium on Security and Privacy, 2021.

[206] Yi Zhou, Jay Bosamiya, Jessica Li, Marijn Heule, and Bryan Parno. Con-
text pruning for more robust SMT-based program verification. In Proceed-
ings of the Formal Methods in Computer-Aided Design (FMCAD) Con-
ference, October 2024.

[207] Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn Heule,
and Bryan Parno. Mariposa: Measuring SMT instability in automated
program verification. In Proceedings of the Formal Methods in Computer-
Aided Design (FMCAD) Conference, October 2023.

[208] Yi Zhou, Sydney Gibson, Sarah Cai, Menucha Winchell, and Bryan Parno.
Galápagos: Developing verified low-level cryptography on heterogeneous
hardware. In Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS), November 2023.

[209] Yi Zhou, Amar Shah, Marijn Heule, and Bryan Parno. Cazamariposas:
Automated instability debugging in SMT-based program verification. In
Proceedings of the Conference on Automated Deduction (CADE), July
2025.

76



[210] Ziqiao Zhou, Weiteng Chen, Chris Hawblitzel, andWeidong Cui. VeriSMo:
A verified security module for confidential VMs. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), July 2024.

[211] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. HACL*: A verified modern cryptographic li-
brary. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, page 1789–1806, New York, NY,
USA, 2017. Association for Computing Machinery.

[212] Sacha Élie Ayoun, Xavier Denis, Petar Maksimović, and Philippa Gard-
ner. A hybrid approach to semi-automated Rust verification. In Proceed-
ings of the ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI). ACM, 2024.

77


	1 Introduction
	1.1 Outline & Summary of Takeaways

	2 Core Research Contributions
	2.1 Program Proof Tools
	2.1.1 Choosing a Language
	2.1.2 Effect Systems in F
	2.1.3 Low: A Shallow Embedding of a C-like Language in F
	2.1.4 Revisiting Low with Separation Logic & Concurrency
	2.1.5 KaRaMeL
	2.1.6 Vale: Verified Assembly Language for Everest
	2.1.7 Metaprogramming
	2.1.8 Engineering

	2.2 Cryptographic Primitives & Constructions
	2.2.1 Cross-Platform C Code With HACL
	2.2.2 Platform-Specific Assembly Code With Vale
	2.2.3 EverCrypt: A Cryptographic Provider

	2.3 Parsers & Serializers
	2.4 Verified Protocols

	3 Industrial Deployments
	3.1 Some Enablers of Success
	3.2 Cryptographic Primitives
	3.3 Parser Generators
	3.4 Protocols

	4 Challenges & Reflections
	4.1 Coping With Change
	4.2 Soundness and Trust
	4.3 Adapting Proofs & Confronting SMT Instability
	4.4 Visibility of Proof States
	4.5 Requiring Deep and Broad Expertise

	5 New Directions
	5.1 High-assurance Systems Programming in Rust
	5.2 Tools for Cryptographic Applications
	5.3 AI-assisted Specification & Proof

	6 Conclusions
	A Contributors to Project Everest

