
Verified Transformations and Hoare Logic:
Beautiful Proofs for Ugly Assembly Language

Jay Bosamiya1, Sydney Gibson2, Yao Li3, Bryan Parno1, and Chris Hawblitzel4

1 Carnegie Mellon University
2 Massachusetts Institute of Technology

3 University of Pennsylvania
4 Microsoft Research

Abstract. Hand-optimized assembly language code is often difficult to
formally verify. This paper combines Hoare logic with verified code trans-
formations to make it easier to verify such code. This approach greatly
simplifies existing proofs of highly optimized OpenSSL-based AES-GCM
cryptographic code. Furthermore, applying various verified transforma-
tions to the AES-GCM code enables additional platform-specific perfor-
mance improvements.

1 Introduction

Some of the most important code in the world is also some of the ugliest. The
most commonly used implementations of cryptographic algorithms are heavily
optimized, typically employing hand-crafted assembly language for maximum
performance. For example, OpenSSL’s implementation of AES-GCM, the cryp-
tographic algorithm used for 91% of secure web traffic [14], contains thousands
of lines of hand-optimized x86-64 assembly language code. The optimizations
unroll loops, prefetch data from memory, carefully hand-schedule instructions,
and interleave otherwise unrelated instructions in an effort to expose parallelism
and keep the processor’s functional units busy. The resulting code is extremely
fast, but difficult to understand, maintain, and verify.

Recent work on EverCrypt [17] used Hoare logic to verify a variant of OpenSSL’s
AES-GCM x64 code. Hoare logic is a natural way to express the verification of
well-structured programs. Unfortunately, the optimizations in OpenSSL’s AES-
GCM code obscure the natural structure of the underlying AES-GCM algorithm,
making Hoare logic awkward to use directly on the optimized code. In partic-
ular, to automate the proofs, it helps to keep code units relatively small, since
that keeps the proof “debug” cycle tolerable for developers. However, the in-
terleaving of unrelated instructions makes it difficult to modularly decompose
the code into smaller units with natural preconditions and postconditions. As
a result, the preconditions and postconditions describe situations where natural
invariants do not yet hold or have already been broken. Worse, each repeated
section of code generated from loop unrolling has to be verified separately, be-
cause the instruction scheduling and interleaving cause each section to contain

2 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

slightly different code with slightly different preconditions and postconditions.
The ugly code leads to ugly proofs and duplicated effort.

This creates a stark trade-off. On one hand, the performance gains from
carefully optimized code are enormous and valuable: the verified code based
on OpenSSL’s optimized code runs 6× faster than earlier verified code written
in a simpler, easier-to-verify style [7]. On the other hand, the effort involved
in verifying optimized code may dissuade authors of cryptographic code from
attempting any formal verification.

We argue that the trade-off is not as stark as it may seem at first glance:

– First, we demonstrate how to use verified transformers to recover the ele-
gance of Hoare logic. In this approach, the programmer uses Hoare logic to
verify a clean, modular version of the code. In addition, the programmer
writes (but does not directly verify) the optimized, non-modular version of
the code. Our verified transformation tool then attempts to automatically
discover the relationship between the clean and optimized versions and prove
their equivalence. This proves that the properties established via Hoare logic
for the clean code apply to the optimized code.

– Second, we manually create a clean, modular version of EverCrypt’s AES-
GCM code and measure its performance. To our surprise, on some CPUs,
the clean code actually runs slightly faster on average than the original
EverCrypt code. In other words, not all of OpenSSL’s optimizations are
equally necessary to achieving its fast performance, and the optimization
that causes the most trouble for EverCrypt’s verification does not appear to
pay off consistently.

– Third, inspired by the observed performance difference between the clean
code and EverCrypt code, we investigate the performance of alternate in-
terleavings of the assembly language instructions for various x86-64 proces-
sor models. We develop a tool that automatically finds interleavings that
are faster than both the EverCrypt code and the clean code, and we use
our verified transformation tool to verify the correctness of these new in-
terleavings. Hence, verified transformers support automated development of
hyper-targeted optimized implementations while still allowing the developer
to write beautiful, Hoare-style proofs.

The rest of the paper is as follows. Section 2 presents background on the Vale
language and tool [5,7], which provides the operational semantics and Hoare
Logic reasoning for our assembly language code. Section 3 presents our verified
transformation tool and describes how it deals with subtle equivalence issues,
such as assembly language status flags. Section 4 applies the tool to an important
real-world case study: OpenSSL’s optimized AES-GCM. Section 5 shows that our
tool can verify alternate interleavings of OpenSSL’s code that are faster than the
original code. Section 6 compares to related work, including related verification of
cryptographic code such as Fiat-Crypto [6] and Jasmin [1,2]. Section 7 concludes
with recommendations for verifying optimized code.

All of our code and proofs are available online, under an open source license.5

5
https://github.com/project-everest/hacl-star/tree/_vale_unstructured/vale

https://github.com/project-everest/hacl-star/tree/_vale_unstructured/vale

Verified Transformations and Hoare Logic 3

2 Background: Vale and Assembly Language

In order to verify x64 code for AES-GCM, previous work [7,17] defined syntax
and operational semantics for x64 instructions as F? [20] datatypes and func-
tions. Below, we provide a representative sampling of these definitions.

// Instruction syntax and semantics, defined in F∗
type reg = Rax | Rbx | Rcx | Rdx | ...
type operand =
| OConst: n:int −> operand
| OReg: r:reg −> operand
| OMem: m:mem addr −> operand

type ins =
| Mov64: dst:operand −> src:operand −> ins
| Add64: dst:operand −> src:operand −> ins
...

type code =
| Ins: ins:ins −> code
| Block: block:list code −> code
...

type state = {
ok:bool;
regs:reg −> nat64;
flags:nat64;
mem:map int nat8;
}
let eval ins (ins:ins) =

...
match ins with
| Mov64 dst src −> ...
| Add64 dst src −> ...
...

let rec eval code (c:code) (s:state) ... =
match c with
| Ins ins −> Some (run (eval ins ins) s)
...

Here, the big-step operational semantics defined by eval_ins and eval_code

evaluate the effects of assembly language instructions on some state, producing
a new state as a result. The state tracks the values in registers (regs), the CPU
status flags (flags), and the memory (mem). An additional state field ok indicates
whether execution has succeeded or crashed. (This description is simplified for
clarity; the full F? implementation of state also includes multimedia (xmm)
registers, a stack, and a more complex memory model.)

The previous work then used the Vale tool [5,7] to build a Hoare logic on top
of the F? syntax and semantics, building the Hoare logic as verified rules on top
of the operational semantics, so that the operational semantics in F? were part
of the trusted computing base but the Hoare logic and the Vale tool did not need

4 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

to be trusted. The Vale language uses procedures with modifies, requires, and
ensures clauses to express the Hoare logic semantics of instructions like Add64

and to build more complex procedures on top of instructions:

// Two example Vale procedures
procedure Add64(inout dst:dst opr64, in src:opr64)

modifies efl;
requires src + dst < pow2 64;
ensures dst == old(dst + src);

procedure Test()
modifies efl; rax;
requires rax < 100;
ensures rax == old(rax + 2);

{
Add64(rax, 1);
Add64(rax, 1);

}

In this work, we leverage the distinction between operational semantics in F?

and Hoare logic in Vale to define verified transformers (Section 3) that translate
between idealized, structured code and optimized, unstructured code. Specifi-
cally, we first use Vale’s Hoare logic to verify the idealized code. Since the Hoare
logic rules are already built on top of the operational semantics, this gives us a
proof about the idealized code in terms of the operational semantics. We then de-
fine verified transformers in terms of the x64 syntax and operational semantics,
without having to modify the Hoare logic. These verified transformers prove that
the operational semantics for the idealized code is equivalent to the operational
semantics for the optimized code.

The transformers work by comparing the idealized code to the optimized
code, where both versions of the code are expressed as an F? datatype, as in the
ins datatype shown above. Since the code is a datatype, the transformers can
inspect the code by pattern matching on the datatype. For better modularity,
though, we used a slight variant of this approach: we refactored the ins type to
be a more general dependent type that contains an arbitrary number of input
and output operands and a function that computes the values for the output
operands from the values from the input operands. With this, the transformer
only has to match on a small number of general instructions rather than matching
separately on Mov64, Add64, etc. (For the most part, only the input and output
operands matter; whether an instruction adds numbers, subtracts numbers, or
just moves numbers is usually irrelevant to the transformations.)

3 Verified Code Transformers

It is easier to write beautiful proofs about modular code. Our goal is to enable
such proofs even for high-performance ugly code. We achieve this by designing
a collection of verified code transformers which allow the developer to write

Verified Transformations and Hoare Logic 5

proofs about the modular code and then apply one or more transformers to
automatically produce the high-performance ugly code. By proving that each
transformer preserves the semantics of the original code, we ensure that the
results of the elegant proofs carry over to the ugly code.

Below, we describe the core workflow for a developer using these transformers
(Section 3.1), details about their design, implementation, and verification (Sec-
tion 3.2), as well as several transformers (Section 3.3) which have significantly
improved the modularity of the proofs for AES-GCM, a case study we describe
in Section 4.

3.1 Developer Workflow

To make use of verified code transformers, a developer first writes a clean, mod-
ular version of their code, and writes proofs about it. Next, they write, but
prove nothing about, a performance-optimized version of their code. This can
be based on existing code (e.g., OpenSSL’s), their own intuition as to what
will maximize performance for a particular architecture, or even an automated
empirical search (see Section 5). Following this, the developer adds simple, high-
level annotations to indicate which transformations (e.g., register re-allocation or
instruction shuffling) they believe will convert their modular code into the high-
performance version. At this point, the transformers take over: An untrusted
tool first deduces a collection of hints necessary to apply a given transformation
(e.g., which permutation should be applied to reorder the instructions). Next, a
verified transformer uses the hints to validate the proposed transformation, and
if successful, performs it. If unsuccessful, then the transformer indicates to the
developer why it was unable to automatically perform a safe transformation.

As an example of using the workflow to verify the high-performance but
ugly code foo_ugly, a developer first annotates foo_ugly with the attribute
{:codeOnly} which indicates that no proofs have been written (yet) about it.
Next, they mark the cleaner code foo (which they have proven against its Hoare
logic spec) with the attribute {:transform T, foo_ugly}. This indicates that
they wish to apply the T transformation to map foo to foo_ugly. These top-level
annotations are the only ones the developer needs to supply, and the transform-
ers automatically recursively apply themselves to internally called Vale proce-
dures. Vale then replaces the code and proofs of foo with the result of applying
the transformer (i.e., the code of foo_ugly), as well as automatically gener-
ated proofs derived from the original proof for foo and the generic proof for
the transformer T, that show that the transformed code satisfies the same pre-
and post-conditions as foo. Thus, any callers of foo obtain the useful Hoare
conditions for foo, but they also transparently obtain the higher performance of
foo_ugly.

3.2 Proving a Code Transformer Correct

To support the workflow described above, we design our code transformers with
an eye towards automation and one-time verification effort. In particular, we

6 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

ensure that our transformers are provably guaranteed to preserve the semantics
of the original code, and we structure each transformer as a combination of an
untrusted front-end that finds the necessary transformation steps and describes
them via a series of hints, and a verified back-end that checks the proposed
transformation and then performs it.

We define two blocks of code to be semantically equivalent in the standard
way; i.e., if and only if starting from valid equivalent initial states, both execute
to equivalent final states, i.e., roughly:

let semantically_equivalent (c1 c2:code) =

(forall (s1 s2:state).

equiv_states s1 s2 ==>

equiv_states (eval_code c1 s1)

(eval_code c2 s2))

Two states are defined to be equivalent if and only if they are pairwise equal
on all of their observable projections. That is, their registers are equal, values in
memory are equal, flags are equal, etc. We can then define a verified code trans-
former as a total function that takes code (and possibly some auxiliary data,
called “hints”) as input and produces code that is semantically equivalent to the
original code. By allowing for untrusted hints, we follow a de Bruijn structure
that allows us to use arbitrarily complicated algorithms for finding transforma-
tions, without needing to prove anything about those algorithms. Additionally,
by choosing the correct representation for the hints (which can be different for
each transformer), we can allow for highly expressive control over the trans-
former.

We describe more transformers below, but as a simple example, it is easy to
see why a no-op transformer (i.e., a transformer that simply returns its input)
is a verified code transformer, albeit a trivial one. It may still be practically
useful, however, when integrated with a more complex transformer that might
fail, since the no-op transformer can be invoked on failure and hence produce
an overall total transformer. Keeping the transformers total makes it easier to
stay within the pre-existing Vale framework, without needing special handling
for transformed code. We show error messages that may arise during a failure
via an additional field added to the internal representation of procedures, which
is checked upon extraction.

The code for the transformers is completely untrusted, since their results are
proven against the pre-existing Vale semantics. In addition, since the transform-
ers prove the semantic equivalence of their results, Vale’s existing correctness
lemmas follow simply and immediately.

Finally, as an important security precaution, we ensure that we perform the
transformations before Vale’s verified taint analyzer runs. (The taint analyzer
runs a dataflow analysis on the instructions to ensure that the code is free of
basic digital side channels [5].) As a result, the taint analyzer runs directly on
the final, ugly code. Hence, the transformers do not impact the results of the
side-channel analysis.

Verified Transformations and Hoare Logic 7

3.3 Example Transformers

Our framework is extensible and many transformers can be written. Here we
describe three transformers we developed to support the modularization of proofs
for AES-GCM: the generic peephole transformer (particularly its instantiation
for movbe-elimination) searches for a small pattern of instructions and replaces
them with equivalent instructions; control-flow lowering transforms high-level
if/else/while statements into low-level control-flow, and instruction reordering
reorders instructions to improve run-time performance.

A Generic Peephole Transformer A peephole transformation searches for a
small pattern of instructions and replaces them with equivalent instructions.
For example, a simple peephole transformation might replace all occurrences of
mov {reg},0 with xor {reg},{reg}. Peephole optimizations are well studied
in the compiler literature [13] and have been verified for CompCert [15]. Here,
we implemented a generic peephole transformer which can safely perform such
search-and-replace operations in a single pass over the code when provided with
an arbitrary replacement pattern that (provably) preserves semantics. As a fur-
ther convenience, the transformation recursively applies itself to all callees of
that procedure too. Since such a replacement is locally semantics-preserving,
and the rest of the code remains untouched, we prove that it is also globally
semantics preserving.

As a concrete example, we used the peephole transformer to safely refactor
pre-existing code, which relies on the movbe instruction, to work on older archi-
tectures. The movbe instruction is a recent addition to the x86-64 architecture
(introduced on Atom, supported since Haswell on mainstream Intel processors).
It performs an endianness change (i.e., a byte swap) while performing a mov.
On earlier processor generations, this step is typically implemented via a mov

and then a bswap instruction which performs an in-place endianness change.
OpenSSL’s version of AES-GCM (and hence the verified EverCrypt version)
regularly uses movbe, which prevents it from running on older processors that
otherwise support the necessary AES extensions.

Hence, we instantiated our generic peephole transformer with a pattern to
replace movbe {dst},{src} with mov {dst},{src}; bswap {dst}. This trans-
formation takes no auxiliary data, and it can be used to automatically update
code to work on processor generations without movbe support, simply by adding
a {:transform movbe_eliminate} attribute to the top-level procedure.

Similarly, we instantiated the peephole transformer to allow the insertion of
prefetch instructions, which act as processor hints to prefetch lines of data into
the cache. Our automatic optimization technique (Section 5) uses this trans-
former to improve performance.

Control-Flow Lowering The Vale language supports only structured control flow
statements (if/else and while) rather than unstructured control flow. Previously,
this structured control flow was built directly into the operational semantics,
and Vale’s assembly language printer had to be trusted to correctly translate

8 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

lemma

perform

hints

failfind

clean
code

fast
code

clean
code

fast
code

clean
code

checks pass

Fig. 1. Instruction-Reordering Transformation

these statements into the right labels and conditional branches. To add flexibility
and reduce the trusted computing base, we extended the operational semantics
to support unstructured control flow. We then wrote a verified transformer to
translate if/else and while statements into labels and branches, in the style of
certified compilation [11].

This transformer is slightly different from other transformers, in that it is
applied to all Vale code, rather than only code that is explicitly user-annotated
with a {:transform ...} declaration. Additionally, beyond the standard guar-
antee of semantics-preservation provided by other transformers, this transformer
also guarantees preservation of digital traces, and thus strongly ensures main-
tenance of digital side-channel freedom, independent of whether Vale’s verified
taint-analyzer is run before or after the transformer.

Instruction Reordering Our most powerful workhorse transformer is the instruc-
tion reordering transform. As Figure 1 illustrates, this transformer takes as input
two code objects (as Vale procedures), and tries to transform one into the other,
as long as it is able to do so in a safe way. These code objects correspond to the
verification-friendly clean modular code, and either hand-optimized code (for ex-
ample, from OpenSSL), or automatically optimized candidate code (as described
in Section 5). To do this transformation safely, the transformer feeds both code
objects into an unverified find function, which produces hints that a verified
perform then validates. If validation succeeds, it applies the transformation to
the first code object in order to produce the second, along with a proof of seman-
tic equivalence. If validation fails, it returns the first code object, and provides
an informative error message to the developer.

The hints that are sent from find to perform are of the form “move the
12th instruction to the start”, “move the 5th group of instructions next”, etc.,
which taken as a whole specify a permutation of the original instructions. This
supports permutation past Vale procedure boundaries, which allows the clean
code to remain modular, despite the lack of clean modularity in the EverCrypt

Verified Transformations and Hoare Logic 9

code. These hints are then validated by perform which checks that these moves
preserve the semantics of the code. It does so by decomposing moves into a
series of swaps, and checking that each swap is allowed, performing it if so. If at
any point a swap is disallowed, the transformer immediately stops any further
processing, and sends a description of the failure to the user.

In building the transformer, we prove that a swap of two groups of instruc-
tions, say A and B, is semantics-preserving when the locations written to by A’s
instructions is strictly disjoint from the locations that are read by or written to
by B, and vice-versa. That is, there are no read-write or write-write conflicts:

(∀(X,Y) ∈ {(A,B), (B,A)}.
(∀l ∈ writes(X).

(l 6∈ reads(Y) ∧
l 6∈ writes(Y))))

Given this proof, perform checks for both types of conflicts, and if the checks
pass, performs the proposed swap. By proceeding through a series of such swaps,
we prove that if perform succeeds, then it produces semantically equivalent
code. Hence, in combination with find, we have a verified transformer that can
safely reorder code from a clean, modular form into a user-chosen, performance-
optimized ordering.

Unfortunately, allowing swaps only when there are no read-write or write-
write conflicts disallows many reorderings that are actually safe. In particular,
many instructions on x86-64 affect the flags. Changing the flags is technically
a write to a location in the state, and hence any two instructions that modify
the flags would be prevented from moving past one another even if the value of
the flags they set was never used after their execution. This is a frequent use
case in Vale, since the Vale semantics conservatively model most instructions
as “havocing” the flags, i.e., setting them to an unrestricted and underspecified
value. To overcome this issue, we observe that two underspecified writes are safe
to exchange with each other, since their result, while different, is equivalent with
respect to any value that can be observed. Thus, if we consider the value of each
flag to be a ternary value (e.g., true, false, or unspecified), then we can safely and
provably refine our condition for safe swaps as follows: a swap that proposes to
move instruction group B in front of instruction group A is semantics-preserving
if all of the locations written to by A both do not belong to the locations read
by B and either do not belong to the locations that are written to by B or are
a constant-write for both A and B and the same constant is written; and vice-
versa. That is, write-write conflicts are allowed as long as they write the same
constant value:

(∀(X,Y) ∈ {(A,B), (B,A)}.
(∀l ∈ writes(X). (l 6∈ reads(Y) ∧

(l 6∈ writes(Y) ∨
(l ∈ constwrites(X) ∧ l ∈ constwrites(Y) ∧
constwrites(X)[l] = constwrites(Y)[l])))))

=⇒ safeswap(A,B)

10 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

Note that we refer to “group of instructions” above, when performing the
moves and swaps. This is because it is convenient to move certain instructions
as a coherent block of code to avoid having a proposed swap be rejected by
the conservative checks in perform. As a toy example, consider two groups of
instructions add rax, 1; adc rbx, 1 and add rcx, 1; adc rdx, 1. In both
cases, the add instruction sets the carry-flag (based on its arguments), and then
the add-with-carry instruction (adc) reads that flag as part of its addition cal-
culation. It is easy to see that both orderings of the two groups are semantically
equivalent (assuming the flags can be ignored after these instructions). How-
ever, if one were to naively try to change one into the other using a series of
instruction-only swaps, then one runs into trouble. The adds set up the carry
flag specifically for their immediately succeeding adc, and simple instruction-
only swapping would lead to an ordering that consisted of two adds followed by
two adcs, along the way to actually reordering them. However, if we consider
them as groups, then they satisfy the constraints for the swap. A large por-
tion of find is thus dedicated to automatically finding groups of instructions to
move together, rather than individually. Note that this is where the separation
between an unverified find and the verified perform shines: we can have arbi-
trarily complicated heuristics for finding good groups of instructions, without
needing to write any proofs about the heuristics, since the transformation and
hints they produce are validated.

4 Verifying AES-GCM

As a case study on the utility of verified code transformations, we apply them
to a version of OpenSSL’s implementation that was verified in prior work [17].

4.1 Background on AES-GCM

AES-GCM is a cryptographic scheme for Authenticated Encryption with Au-
thenticated Data (AEAD). In other words, it protects the secrecy and integrity
of a message (e.g., the payload of a network packet) and (optionally) protects the
integrity of some additional public information (e.g., a network packet’s header).
AES-GCM is one of the world’s main tools for protecting bulk data, particularly
on the Internet, where it is used for 91% of secure traffic [14]. In many of these
settings, AES-GCM is on the critical path, since it dictates how quickly data
can be read/written.

Given this ubiquity, the world has devoted considerable effort to optimizing
the performance of AES-GCM, both in hardware and software. On the hardware
side, in 2008, Intel introduced AES-NI [9], a collection of new instructions de-
voted to accelerating portions of the AES-GCM computation. Even with these
hardware instructions, optimal software implementations are non-trivial. For
example, OpenSSL’s most optimized implementation on x64 involves over 950

Verified Transformations and Hoare Logic 11

l e a ($in0 ,%r12) , $ in0
vpclmulqdq \$0x01 , $Hkey , $ I i , $T2
vpclmulqdq \$0x11 , $Hkey , $ I i , $Hkey
vpxor 16+8(%rsp) , $Xi , $Xi
vmovdqu 0x40+8(%rsp) , $ I i
vmovdqu 0x30−0x20 ($Xip) , $Z1
movbe 0x58 ($ in0) ,% r13
movbe 0x50 ($ in0) ,% r12
mov %r13 , 0 x20+8(%rsp)
mov %r12 , 0 x28+8(%rsp)
vaesenc $rndkey , $inout0 , $ inout0
vaesenc $rndkey , $inout1 , $ inout1
vaesenc $rndkey , $inout2 , $ inout2
vaesenc $rndkey , $inout3 , $ inout3
vaesenc $rndkey , $inout4 , $ inout4
vaesenc $rndkey , $inout5 , $ inout5

(a) A modular version of the code

vpclmulqdq \$0x01 , $Hkey , $ I i , $T2
l e a ($in0 ,%r12) , $ in0
vaesenc $rndkey , $inout0 , $ inout0
vpxor 16+8(%rsp) , $Xi , $Xi
vpclmulqdq \$0x11 , $Hkey , $ I i , $Hkey
vmovdqu 0x40+8(%rsp) , $ I i
vaesenc $rndkey , $inout1 , $ inout1
movbe 0x58 ($ in0) ,% r13
vaesenc $rndkey , $inout2 , $ inout2
movbe 0x50 ($ in0) ,% r12
vaesenc $rndkey , $inout3 , $ inout3
mov %r13 , 0 x20+8(%rsp)
vaesenc $rndkey , $inout4 , $ inout4
mov %r12 , 0 x28+8(%rsp)
vmovdqu 0x30−0x20 ($Xip) , $Z1
vaesenc $rndkey , $inout5 , $ inout5

(b) Representative snippet of OpenSSL

Fig. 2. We write proofs about the cleaner, more modular version of the AES-GCM
code (a) and then use verified code transformers to connect these proofs to the original
OpenSSL code (b). AES operations are highlighted in blue, GCM in green, prefetching
and processing of input data in red, and loop control checks in yellow.

SLOC of Perl scripts [21], which generate 724 SLOC of assembly. Using Perl al-
lows the code to, for example, generate assembly for unrolled loops and customize
the registers used in each unrolling. The complexity of these optimizations can
lead to concerete security vulnerabilities: In 2013, a performance improvement
was added to OpenSSL’s codebase, passed all tests, and was on its way into
the mainline code when two cryptographers noticed that the optimization would
allow an attacker to forge arbitrary messages [8].

Conceptually, computing AES-GCM involves splitting the input into 128-bit
blocks, computing AES counter-mode encryption on each block to produce a
ciphertext, and finally computing the GCM message authentication algorithm
on the resulting ciphertext and any additional authenticated data. A naive im-
plementation written along these conceptual lines is relatively straightforward
to verify, but results in performance that is 6× slower than OpenSSL’s [17].

Indeed, in its drive for better performance, OpenSSL’s implementation merges
these conceptual operations so that it need only perform a single pass over the
data. It also, when able, processes the input six blocks at a time, so as to make
maximal use of available registers. Even at the block level, the individual in-
structions for performing AES steps are intermixed with those for performing
the GCM steps as well as with memory manipulation steps (e.g., loading input
data, transforming it into a suitable form to feed to AES, and storing results back
to memory), presumably in an effort to keep the processor’s functional units fully
saturated. The GCM instructions for carryless multiplies and polynomial reduc-
tions are carefully ordered to improve parallelism, and various modular reduction
steps are delayed to amortize their cost. Individual instructions themselves rely
heavily on SIMD operations over 128-bit XMM registers.

12 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

As shown in Figure 2b, the result is Perl code that mixes, instruction-by-
instruction, conceptually different operations (shown by the various colors).

Unsurprisingly, such code is far more challenging to verify. Prior work [17] re-
lies on SMT solvers and hence is limited in how many instructions can reasonably
fit into a single procedure. As a result, they divide OpenSSL’s code into smaller
units demarcated with Hoare-logic pre- and postconditions. Unfortunately, the
intermingled nature of the code makes it difficult to decompose the code in a
clean modular fashion, since at any given instruction boundary, the invariants
for one conceptual step do not yet hold or have already been broken. The result
is large (∼3500 LOC), inelegant proofs, despite the automation provided by the
SMT solver (and a custom VC generator [7]).

4.2 Verifying AES-GCM via Code Transformations

With the power of verified code transformers at hand, we re-wrote the previ-
ously verified, OpenSSL-based AES-GCM code [17], in a clean, modular fashion.
Figure 2a shows a representative snippet, where the instructions for each con-
ceptual operation are now grouped, and even within a group, logically similar
operations (e.g., vpclmulqdq) are themselves grouped together. This reordering
already makes the conceptual structure of the code much simpler to see and
reason about (e.g., the AES instructions are now more obviously computing six
128-bit blocks in parallel, using the same round key for each block).

Furthermore, with the ability to reorder instructions, we were able to ex-
tract the three major functional steps (AES, GCM, and input manipulation)
into generic procedures that utilize Vale’s operand parameters and inline argu-
ments to customize each procedure at compile time. Hence, each procedure can
be customized at its invocation point to, for example, use a particular register
assignment in a given round of the AES computation, as shown in Figure 3. This
eliminates the need for custom per-round procedures and dramatically reduces
the total amount of code and proofs needed.

For our case study, we applied our transformers to the inner loop of Ever-
Crypt’s AES-GCM implementation, where the proof-to-code ratio is 5.0:1 (com-
pared to 2.6:1 in the remaining 3250 lines of proof and code). Overall, the
instruction-reordering transformer enabled us to write the inner loop of AES-
GCM in 450 lines of code and proof, compared with EverCrypt’s version, which
required 1250 lines, a nearly 3× reduction. Both versions produce the same ap-
proximately 250 lines of assembly code.

Given our clean, modular version and the original ugly EverCrypt version,
the instruction-reordering transformer automatically discovered the necessary
instruction permutations; the only annotation needed was to specify which trans-
formation we desired.

We subsequently employed our peephole transformer to create custom vari-
ants of the code that can run on older platforms that do not support the movbe

instruction. Also, using our peephole transformer, we show that the prefetch

optimizations are indeed safe.

Verified Transformations and Hoare Logic 13

procedure Loop6x plain(
inline alg:algorithm, // inline argument
inline rnd:nat, // inline argument
...
out rndkey:xmm) // rndkey is an operand parameter

...
{

Load128 buffer(rndkey, rcx, // rcx is base address
16 ∗ (rnd + 1) − 0x80, // offset from rcx
...);

VAESNI enc(inout0, inout0, rndkey);
VAESNI enc(inout1, inout1, rndkey);
VAESNI enc(inout2, inout2, rndkey);
VAESNI enc(inout3, inout3, rndkey);
VAESNI enc(inout4, inout4, rndkey);
VAESNI enc(inout5, inout5, rndkey);

...
}
...
Loop6x plain(alg, 0, ..., xmm2);
Loop6x plain(alg, 1, ..., xmm15);
...
Loop6x plain(alg, 8, ..., xmm15);

Fig. 3. Compile-time customization of procedures in our modular AES-GCM code

Finally, since we apply the control-flow lowering transform to all Vale code,
we automatically obtain provably-correct unstructured code.

5 Optimizing Code for Each Processor Generation

When writing high-performance software, micro-architectural details of a given
processor can influence which style of code performs best. In particular, code
that is optimized for one processor generation may not perform optimally on
another generation of the same processor. Nevertheless, maintaining a different
version of the code for each generation of each processor is a daunting task,
and hence, even OpenSSL (which supports a wide variety of CPUs with and
without various extensions like SSE2, AVX, AES-NI) typically does not go to
these lengths to squeeze out additional performance. With the use of verified
code transformers, however, we show that we can now safely and automatically
produce code that is optimized on a per-generation basis. Hence, verification
enables us to reap the rewards of higher performance, in a provably safe way,
with marginal extra effort.

The key observation is that having done the work to produce a verified trans-
former (in particular, the instruction-reordering transformer from Section 3.3),

14 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

we can supply it with our clean modular code and any unverified code that
produces a performance improvement. As long as the transformer accepts that
code, we can safely employ it.

Hence, we developed a genetic algorithm to search for faster instruction or-
derings on a given processor. The algorithm takes as input an initial code object
and applies a series of random mutations (shuffling of instructions) to create the
first “generation” of candidates. Candidates also are allowed to mutate with a
small chance to have random prefetch instructions added. Each candidate is
sanity-checked for correctness on a single input-output test pair. Candidates that
pass this fast sanity-check are then automatically benchmarked on the processor.
The fastest candidates then “breed” by combining portions of their mutations
(along with a small chance of new random mutations appearing), to produce a
new generation of candidates. This process continues looping up to a time or
generation bound provided by the developer, at which time the overall fastest
candidate across all the generations is returned.

To evaluate the effectiveness of this approach, we have run this algorithm on
five x86-64 processors of varying generations, namely Intel’s i5-2500, i7-3770, i7-
7600U, and i9-9900K, and AMD’s Ryzen 7 3700X. For each processor, we exper-
imented with starting the genetic algorithm both from the original EverCrypt
version of OpenSSL’s hand-optimized assembly, and from our clean, modular
version. We took the resulting optimized algorithm from each processor and au-
tomatically verified them using the transformers from our cleaned up modular
version to confirm semantic equivalence. For the i5-2500 and i7-3770 proces-
sors, which do not support the movbe instruction that is used in EverCrypt, we
applied the movbe-elimination transformer (Section 3.3) before starting opti-
mization. We also applied it to implementations optimized for newer platforms
before running them on the older non-movbe platforms. As additional context,
we also include the (unverified) OpenSSL code that was the basis for the Ever-
Crypt implementation; running this code on the i5-2500 and i7-3770 processors
entailed manual modifications to replace movbe instructions. We then ran all of
these implementations on all of our processors.

The results of these benchmarks are shown in Table 1. Each row of the table
corresponds to a different instruction-ordering of the code, while each column
corresponds to a different processor. Each cell in the table shows the minimum
number of cycles it took to encrypt 4096 bytes of data, with zero bytes of ad-
ditional data, across 20 million iterations. The smallest value in each column is
marked in bold, and represents the fastest code for that processor. As the table
illustrates, each processor has an optimal ordering, and this optimal ordering
can give speedups on top of state-of-the-art OpenSSL or EverCrypt code by up
to 27% or 13% respectively.

Overall, our results show that highly targeted code implementations can give
non-trivial performance improvements. Further optimizations are, of course, still
possible, either via an improved automated search algorithm, or via targeted
changes from performance optimization experts. Either way, the verified code
transformers conveniently and automatically connect the clean, proven code with

Verified Transformations and Hoare Logic 15

Code \ Tested on i5-2500 i7-3770 i7-7600U i9-9900K 3700X

Optimized for i5-2500 ˆ12957 ˆ12560 ˆ2454 ˆ2378 ˆ3492
Optimized for i7-3770 ˆ12960 ˆ12557 ˆ2454 ˆ2382 ˆ3456
Optimized for i7-7600U ˆ14340 ˆ13917 2450 2476 3528
Optimized for i9-9900K ˆ14382 ˆ13941 2453 2378 3528
Optimized for 3700X ˆ14127 ˆ13696 2452 2486 3168

Clean ˆ13632 ˆ13222 2463 2486 3420
EverCrypt ˆ14619 ˆ14198 2452 2474 3492
OpenSSL ∗14943 ∗14428 2986 2980 4032

Table 1. Cycle counts for various reorderings on different processors. Code with ˆ used
the movbe-elimination transformer to run/optimize on older processors. Code with ∗

denotes manual elimination of movbe from OpenSSL’s interleaved variant.

the optimized versions, ensuring that such optimizations will never violate cor-
rectness or security (unlike some previous optimizations attempts [8]).

6 Related Work

Although few projects have explored verified translations at the level of assem-
bly language, verified transformations are well understood at higher levels. In
particular, verified transformations are the basis for certified compilers such as
CompCert [11], which applies repeated translations and optimizations to com-
piler intermediate languages. The VST project [3] built a Hoare logic on top
of CompCert, so that Hoare logic proofs about high-level code imply properties
about compiler-generated low-level code too. An example application of VST was
a cryptographic primitive (SHA) [4], although compiler-generated cryptographic
code often runs slower than hand-optimized assembly language code [5].

To support hand-optimized code, our reordering transformation must exam-
ine two existing versions of code and discover the relationship between them.
This contrasts with typical verified compilers and optimizers, which are given
just one version of the code and can then decide which code to generate.

Translation validation is a pragmatic alternative to compiler verification [16].
In contrast to the latter, which aims to verify that a compiler always produces
the correct code, this approach verifies that a particular compiled code correctly
implements its source program. For example, Sewell et. al. [19] use this approach
to extend the verification of the source code of seL4, an operating system mi-
crokernel [10], written in C, to that of the compiled binary. The validation is
based on a refinement proof between the two programs. TInA [18] takes a differ-
ent approach, lifting inline assembly into C, to improve the precision of existing
C analyzers, by applying translation validation to confirm that the lifted-and-
recompiled code is equivalent to the original. While translation validation can
leverage the general-purpose reasoning of an SMT solver, it can also suffer from
the unpredictability of SMT solvers. Targeted verified translations are less gen-
eral, but produce more predictable results.

16 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

Fiat-Crypto [6] and Jasmin [1,2] both support verified translation from higher-
level code to lower-level code. Jasmin uses Hoare logic at a high level; its lowest
is slightly higher than assembly language, although low enough to make compila-
tion straightforward (for example, the Jasmin compiler’s register allocator never
spills variables to the stack). Fiat-Crypto includes high-level domain-specific op-
timizations for elliptic curve cryptography, relieving the programmer of having
to generate low-level optimized C code. Nevertheless, for widely used algorithms
like AES-GCM, cryptography developers still consider it worthwhile to develop
hand-optimized assembly code, and we believe that it is valuable to verify this
hand-optimized code.

Superoptimizers [12] search for fast assembly language sequences and try
to automatically establish equivalence with the original source code. However,
typical superoptimizers can only generate short code sequences. Our genetic
algorithm and verified transformer works on much longer instruction sequences
(100s of instructions), albeit only for specific types of transformations.

7 Conclusions and Future Work

Code designed to be verified is not necessarily the same as code designed to run
fast. However, some simple transformations can connect the two versions of the
code. We have demonstrated such transformations both to increase confidence in
existing code (in particular, OpenSSL’s highly interleaved AES-GCM implemen-
tation) and to point the way towards alternate implementations that can have
even higher performance on some platforms. Although the performance impact
of interleaving instructions is small on the most recent Intel processors, we did
find significant differences in performance both on older Intel processors and
on a recent AMD processor; based on this, we speculate that such differences
may be even more significant on less recent and/or non-Intel processors, such as
less-powerful embedded processors.

For people focused on verification, it is heartening (and surprising) that the
verification-friendly version of the AES-GCM code that we developed often out-
performed the original, more interleaved code on several platforms. This sug-
gests that developers of high-performance verified code should focus on major
optimizations like domain-specific algorithm optimizations, loop unrolling and
careful register allocation, and worry less about the exact sequence of instruc-
tions; this sequence may be better determined by automated search algorithms,
supported by verified transformation tools.

One limitation of our current verified transformations is that writes to the
heap cannot be reordered relative to other heap reads and writes. We are cur-
rently exploring ways to relax this restriction. For example, we are annotating
heap loads and stores with identifiers that represent disjoint regions of memory;
with these annotations, a transformer can safely reorder memory operations an-
notated with distinct identifiers.

Verified Transformations and Hoare Logic 17

Acknowledgments

We thank the anonymous reviewers for valuable feedback. Work at Carnegie
Mellon University was supported in part by the Department of the Navy, Office
of Naval Research under Grant No. N00014-18-1-2892, and grants from the Intel
Corporation and the Alfred P. Sloan Foundation.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte,
V., Oliveira, T., Pacheco, H., Schmidt, B., Strub, P.Y.: Jasmin: High-
assurance and high-speed cryptography. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (2017).
https://doi.org/10.1145/3133956.3134078

2. Almeida, J.B., Barbosa, M., Barthe, G., Grégoire, B., Koutsos, A., Laporte, V.,
Oliveira, T., Strub, P.: The last mile: High-assurance and high-speed crypto-
graphic implementations. CoRR abs/1904.04606 (2019), http://arxiv.org/abs/
1904.04606

3. Appel, A.W.: Verified software toolchain. In: ESOP: 20th European Symposium
on Programming (2011)

4. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans.
Program. Lang. Syst. 37(2), 7:1–7:31 (Apr 2015)

5. Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K.R.M., Lorch, J.R., Parno, B.,
Rane, A., Setty, S., Thompson, L.: Vale: Verifying high-performance cryptographic
assembly code. In: Proceedings of the USENIX Security Symposium (August 2017)

6. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: Proceedings
of the IEEE Symposium on Security and Privacy (2019)

7. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A., Swamy, N.:
A verified, efficient embedding of a verifiable assembly language. In: Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL) (Jan
2019)

8. Gueron, S., Krasnov, V.: The fragility of AES-GCM authentication algorithm. In:
Proceedings of the Conference on Information Technology: New Generations (Apr
2014)

9. Gueron, S.: IntelR© Advanced Encryption Standard (AES) New Instructions
Set. https://software.intel.com/sites/default/files/article/165683/

aes-wp-2012-09-22-v01.pdf (Sep 2012)
10. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,

Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Trans-
actions on Computer Systems 32(1) (2014)

11. Leroy, X., Blazy, S., Kästner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pcert – a formally verified optimizing compiler. In: Embedded Real Time Software
and Systems (ERTS). SEE (2016)

12. Massalin, H.: Superoptimizer – a look at the smallest program. In: Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (1987)

13. McKeeman, W.M.: Peephole optimization. Commun. ACM 8(7) (Jul 1965)
14. Mozilla: Measurement dashboard. https://mzl.la/2ug9YCH (Jul 2018)

https://doi.org/10.1145/3133956.3134078
http://arxiv.org/abs/1904.04606
http://arxiv.org/abs/1904.04606
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://mzl.la/2ug9YCH

18 Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel

15. Mullen, E., Zuniga, D., Tatlock, Z., Grossman, D.: Verified peephole optimiza-
tions for compcert. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (2016)

16. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Tools and Al-
gorithms for Construction and Analysis of Systems, 4th International Confer-
ence, TACAS ’98, Held as Part of the European Joint Conferences on the The-
ory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April
4, 1998, Proceedings. pp. 151–166 (1998). https://doi.org/10.1007/BFb0054170,
https://doi.org/10.1007/BFb0054170

17. Protzenko, J., Parno, B., Fromherz, A., Hawblitzel, C., Polubelova, M., Bhargavan,
K., Beurdouche, B., Choi, J., Delignat-Lavaud, A., Fournet, C., Kulatova, N., Ra-
mananandro, T., Rastogi, A., Swamy, N., Wintersteiger, C., Zanella-Beguelin, S.:
EverCrypt: A fast, verified, cross-platform cryptographic provider. In: Proceedings
of the IEEE Symposium on Security and Privacy (May 2020)

18. Recoules, F., Bardin, S., Bonichon, R., Mounier, L., Potet, M.L.: Get Rid of In-
line Assembly through Verification-Oriented Lifting. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE) (Nov 2019)

19. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified os
kernel. In: Proceedings of ACM PLDI (2013)

20. Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoué, J.K.,
Zanella-Béguelin, S.: Dependent types and multi-monadic effects in F*. In:
Proceedings of the ACM Conference on Principles of Programming Languages
(POPL). pp. 256–270. ACM (Jan 2016)

21. Wheeler, D.A.: SLOCCount. Software distribution, http://www.dwheeler.com/

sloccount/

https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

	Verified Transformations and Hoare Logic: Beautiful Proofs for Ugly Assembly Language

